

CBased Environmental Pty Limited ABN 62 611 924 264

Calga Quarry

Environmental Monitoring

Dust Deposition, Surface Water, Groundwater and Meteorological Data

February 2021

Colin Davies BSc MEIA CENVP

Environmental Scientist Date: 19 March 2021

© CBased Environmental Pty Limited 2020. This document was prepared solely for the original recipient and no third party must rely on or use any information without the consent of CBased Environmental Pty Limited. CBased Environmental Pty Limited and the author accept no responsibility to any third party who uses or relies upon the information contained in this report.

Executive Summary

CBased Environmental is contracted by Hanson Quarry Products to conduct environmental monitoring at the Calga Sand Quarry.

The monitoring includes:

- Dust deposition;
- Surface water; and
- A meteorological data.

This report was prepared by CBased Environmental and includes the following results for February 2021:

- Dust deposition;
- Surface water quality;
- Bi-monthly ground water quality; and
- Meteorological parameters.

The February 2021 dust deposition results for insoluble solids showed:

- Increased levels when compared to January 2021 with exception to CD3 which has decreased levels in comparison.
- · No excessively contaminated dust gauges; and
- Rolling annual averages below the Air Quality Management Plan criteria of 3.7g/m².month.

Monthly surface water samples were collected at sites A, C1, C2, D and F. Samples were not collected from site B due to the site being dry at the time of sampling. The samples were collected and analysed for a monthly sampling event. Results show pH within the slightly acidic range, low electrical conductivity, low total dissolved solids and low total suspended solids. Oil and grease was not detected at sites A, C1, C2, D and F in February 2021.

The Calga Quarry weather station data recovery in February 2021 was approximately 93%. A summary of rainfall comparison is provided below.

Location	Rainfall (mm)
Calga Quarry	62.4mm
BOM Peats Ridge*	NA
BOM Gosford*	91.4mm
BOM Peats Ridge long-term mean for February*	154.3mm

Notes: NA = Not Available

*Data sourced from Bureau of Meteorology (BOM) website: www.bom.gov.au BOM stations report rainfall at 9am

Calga Quarry station reports rainfall at midnight.

1.0 Sampling Programme

Hanson Calga Quarry conducts environmental monitoring in accordance to Development Consent, OEH (EPA) licence and Environmental Management Plans. CBased Environmental are contracted to undertake dust deposition gauge, surface water, groundwater and meteorological monitoring for the project. CBased Environmental commenced monitoring from the April 2006 monitoring period.

Dust deposition gauges are operated to the Australian Standard AS3580.10.1 "Methods for sampling and analysis of ambient air method. Determination of particulates- deposited matter- gravimetric method". Sampling is undertaken every 30 +/- 2 days and each gauge is analysed for insoluble solids and ash residue. The results are reported as g/m².month.

Six (6) dust deposition gauges are monitored as follows:

- CD1 installed 1 May 2006. Gauges air quality impacts to the east of site operations;
- CD2c located on a rehabilitated section of land between the extraction area and adjacent resident. Gauges air quality impacts to the north of site operations. Replaces former gauges CD2a and CD2b;
- CD3 installed prior to May 2006. Gauges air quality impacts to the south of site operations;
- CD4 installed 3 October 2006. Gauges air quality impacts to the south of site operations;
- CD5 installed 14 December 2006. Gauges air quality impacts to the south of site operations; and
- CD6 installed 14 December 2006. Gauges air quality impacts to the south of the operations.

Dust gauge CD2a was discontinued at the start of August 2006 due to quarry operations "mining out" the site of the gauge. The replacement gauge, CD2b, was located in a position adjacent to the boundary between B. Kashouli and F. & J. Gazzana in conformance with the Air Quality Management Plan. CD2b was discontinued at the end of January 2010 due to contamination of the gauge by non-quarry related vehicle movements on a track adjacent to the gauge. CD2b was replacement by dust gauge CD2c.

Surface water is sampled in accordance with Australian Standards:

- AS5667.1 "Guidance on the design of sample programs, sampling techniques and the preservation and handling of samples";
- AS5667.6 "Water quality sampling—guidance on sampling of rivers and streams"; and
- AS5667.4 "Water quality sampling—guidance on sampling from lakes, natural and man-made".

Surface water monitoring sites include local streams and dams. Laboratory analysis includes pH, electrical conductivity, total suspended solids, total dissolved solids and total oil and grease. Monitoring is conducted monthly at Sites A and F (dams) and

when Sites B, C and D are flowing. Additional samples are collected when daily rainfall exceeds 50mm.

Groundwater is sampled in accordance with Australian Standards:

- AS5667.1 "Guidance on the design of sample programs, sampling techniques and the preservation and handling of samples"; and
- AS5667.11 "Water quality sampling—guidance on sampling of ground waters".

Groundwater monitoring sites are sampled bi-monthly for depth and water quality. Groundwater monitoring loggers continuously record water levels in a selection of bores.

Meteorological monitoring is conducted at the quarry and displayed on the site computer with a real-time display. Metrological parameters are measured according to Australian Standard AS3580.14 "Methods for sampling and analysis of ambient air. Meteorological monitoring for ambient air quality monitoring applications"

The weather station has the following sensor configuration:

- Air temperature;
- Humidity;
- Rainfall:
- Atmospheric pressure;
- · Evaporation;
- Solar radiation;
- Wind speed; and
- Wind direction.

CBased Environmental continued to operate the monitoring equipment and utilise site collections at their existing locations.

The locations of monitoring points are provided in Figure 1.

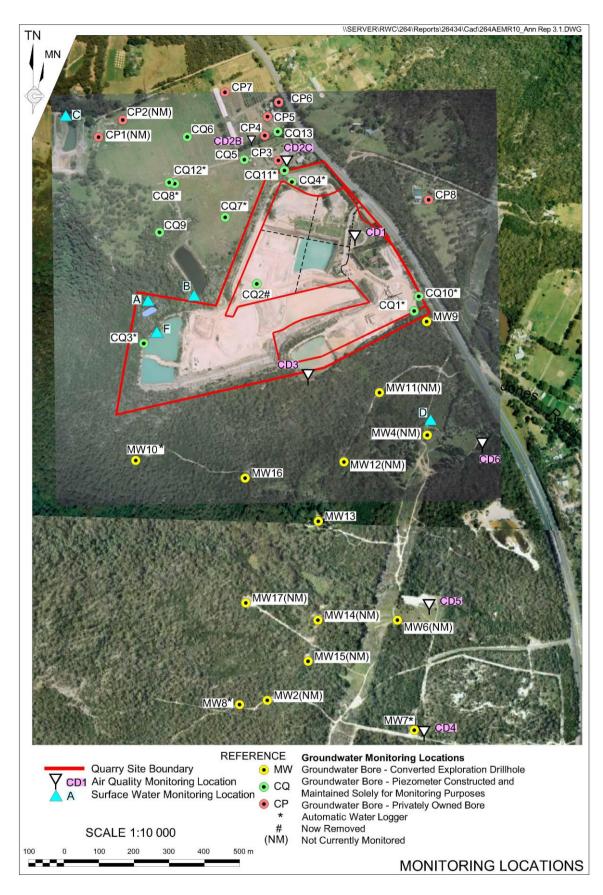


Figure 1: Hanson Calga Quarry Environmental Monitoring Locations

2.0 Results

2.1 Dust Deposition

The results for February 2021 and the project 12-month rolling average are provided **Table 1**.

Dust deposition charts for all dust gauge sites appear in **Figure 2** below. The field sheet, chain of custody documentation and laboratory analysis certificates are provided in **Appendix 1**.

Table 1: Dust Deposition Results: 3 February 2021 – 4 March 2021 (30 days)

Site	Monthly Insoluble Solids	Monthly Ash Residue	Monthly Combustible Matter	Monthly Ash Residue/ Insoluble Solids %	Rolling Annual Average Insoluble Solids
CD1	1.9	1.0	0.9	53	1.4
CD2c	1.4	0.5	0.9	36	0.9
CD3	1.1	0.5	0.6	45	1.2
CD4	0.6	0.2	0.4	33	0.7
CD5	1.7	1.4	0.3	82	0.8
CD6	0.8	0.4	0.4	50	0.7

Notes:

Units in q/m².month unless indicated

Insoluble solid results marked with an * indicate an excessively contaminated gauge. Contamination can include bird droppings, vegetation (such as plant matter, algae, pollen and seeds) and insects

Results in **bold** indicate insoluble solids levels above 3.7g/m².month; the Development Consent's annual average amenity criteria at residential locations

The current rolling annual average is calculated from March 2020 to February 2021

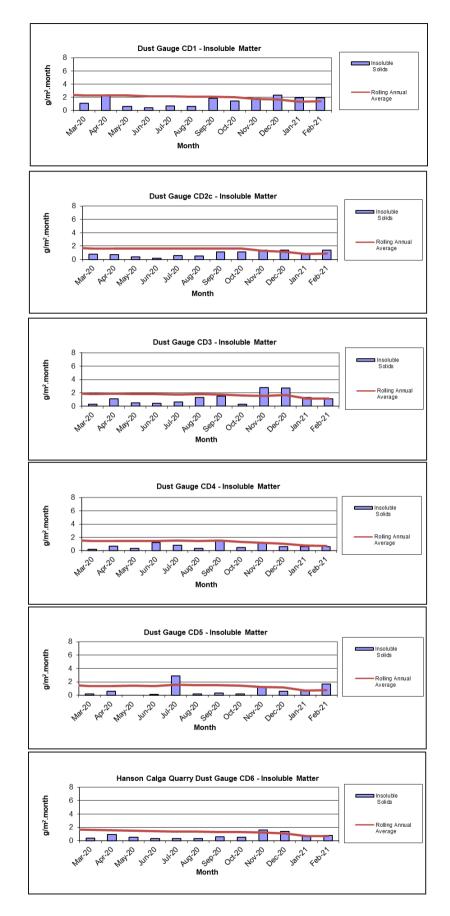


Figure 2: Summary Monthly/Annual Dust Deposition Results for Insoluble Solids

2.2 Surface Water (Monthly)

Monthly surface water monitoring was conducted on 3 February 2021 and results are provided in **Table 2**. The field sheet, chain of custody documentation and laboratory analysis certificates are provided in **Appendix 1**.

Samples were collected at sites A, C1, C2, D and F.

Table 2: Monthly Surface Water Monitoring Results – February 2021

Site	Observed Flow Rate* (visual)	Water Colour* (visual)	Turbidity* (visual)	рН	EC (μS/cm)	TDS (mg/L)	TSS (mg/L)	Oil and Grease (mg/L)
Α	Dam	Clear	Clear	5.65	91	80	<5	<5
В				No fl	ow			
C1	Dam	Clear	Clear	6.42	88	49	9	<5
C2	Steady	Clear	Clear	6.14	103	54	5	<5
D	Trickle	Clear	Clear	5.09	88	56	6	<5
F	Dam	Green	Slight	6.1	94	58	<5	<5

^{*} Indicates field measurements. All other results are laboratory analysed

2.2.1 Non-Routine Surface Water Sampling

No non-routine surface water sampling was completed in February 2021.

2.3 Groundwater (Bi-monthly)

Groundwater was sampled on 3 February 2021. Data is displayed in Table 3 and Figures 3-6. The field sheet, chain of custody documentation and laboratory analysis certificates are provided in Appendix 1.

Water quality tests for pH and electrical conductivity were conducted by CBased Environmental Pty Limited. For water quality purposes, water was purged from the bore until constant pH (+/- 0.1 pH units) and electrical conductivity (+/- 5%) was obtained between samples.

EC = Electrical conductivity

TDS = Total dissolved solids

TSS = Total suspended solids

Table 3: **Groundwater Quality Data**

Site	Bore	Туре	Depth to Water April 2006	Depth to Water (this report)	pH (this report)	Electrical Conductivity (this report)
CQ3	Voutos	* Monitor	10.53	10.95	6.64	89.6
CQ4	Voutos	* Monitor	8.78	10.98	5.63	114.5
CQ5	Gazzana	Dip only	8.69	6.29	4.06	211.1
CQ6	Gazzana	Dip only	16.00			
CQ7	Gazzana	* Monitor	6.89	5.96	5.59	214.2
CQ8	Gazzana	* Monitor	11.03	5.88	4.48	113.4
CQ9	Gazzana	Dip only	10.10			
CQ10	Voutos	* Monitor	NI	24.69	5.42	106.2
CQ11S	Gazzana	* Monitor	NI	11.21	5.65	141.4
CQ11D	Gazzana	* Monitor	NI	12.93	5.14	124.8
CQ12	Gazzana	* Monitor	NI	3.97	4.28	126.4
CQ13	Kashouli	* Monitor	NI	12.89	4.3	131.1
CP3	Gazzana	Domestic	10.40			
CP4	Kashouli	Domestic	13.63	2.43	4.61	182.5
CP5	Kashouli	Domestic	16.61	6.67	6.09	84.1
CP6	Kashouli	Domestic	16.27	6.01	4.36	117.8
CP7	Kashouli	Production	8.56	2.23	5.68	97.2
CP8	Rozmanec	Domestic	22.17	20.97	4.45	87.6
CP13	W P White	Domestic	NI	10.59	4.46	111
CP15	32 Polins Road, Calga	Domestic	NI	2.68	5.46	106.5
MW7	Rocla Bore	* Monitor	15.76	12.70	5.75	29.7
MW8	Rocla Bore	* Monitor	9.82	6.60	5.1	44.9
MW9	Rocla Bore	* Monitor	22.44	23.29	4.49	67.5
MW10	Rocla Bore	* Monitor	15.41	10.67	4.48	91.8
MW13	Rocla Bore	Dip only	NI	8.90	4.47	81.2
MW16	Rocla Bore	Dip only	NI	8.20	4.45	90.8
MW17	Rocla Bore	Dip only	NI	10.12	4.87	94.7

Notes:

Water level measured from top of bore case (TOC) to water pH measured in pH units / electrical conductivity measured in μS/cm

Blank cells = no data available

NI = Bores installed after April 2006. April 2006 was the first set of measurements taken by CBased Environmental Pty Limited

Yellow shading indicates increase to groundwater depth (water moved away from surface) since last sampling event

Green shading indicates decrease to groundwater depth (water moved towards surface) since last sampling event

Pink shading indicates stable groundwater depth (+/- 0.01m) since last sampling event

^{* =} Logger Installed

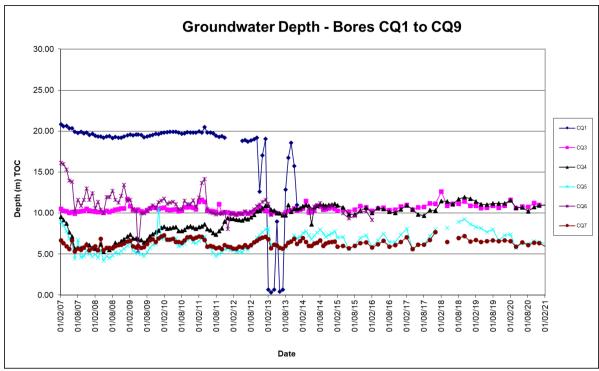


Figure 3: Groundwater Depth – Bores CQ1 to CQ9

Figure 4: Groundwater Depth – Bores CQ10 to CQ13

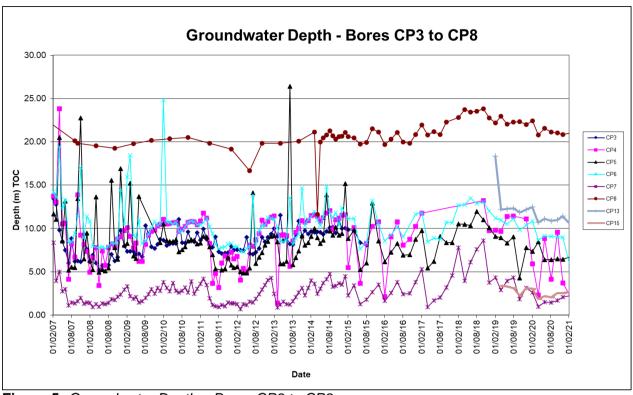


Figure 5: Groundwater Depth – Bores CP3 to CP8

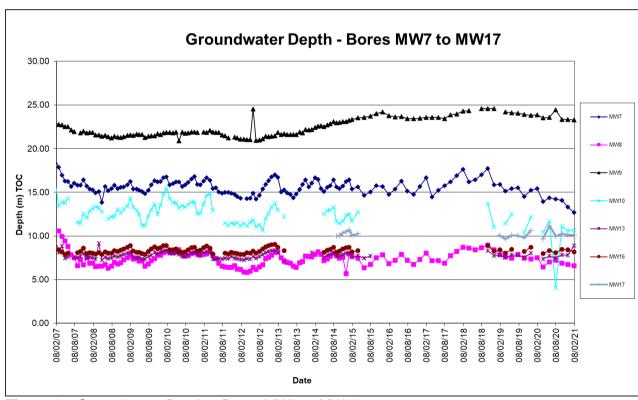


Figure 6: Groundwater Depth – Bores MW7 to MW17

2.3 Meteorological Data

The Calga Quarry weather station data recovery for February 2021 was approximately 93% due to insufficient data on 18 and 19 February 2021 due to power outages.

The weather station data follows and includes:

- Monthly rainfall comparison between quarry data and BOM data. Refer to Table 4;
- Monthly data summary. Refer to Table 5;
- Weather charts of air temperature, humidity, heat index and wind chill, atmospheric pressure, solar radiation, evapotranspiration, rain, wind speed and data reception. Refer to Figures 7 – 10; and
- Wind rose (frequency distribution diagram of wind speed and direction). Refer to Figure 10.

A summary of rainfall comparison is provided in **Table 4**.

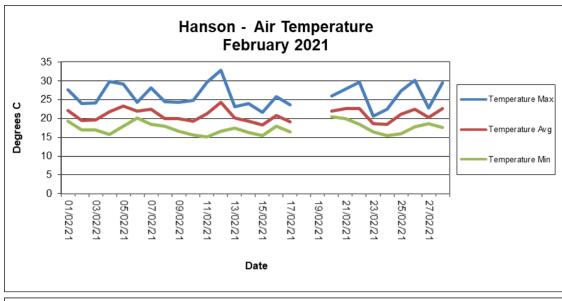
Table 4: Comparison of Local Rainfall – February 2021

Location	Rainfall (mm)
Calga Quarry	62.4mm
BOM Peats Ridge*	NA
BOM Gosford*	91.4mm
BOM Peats Ridge long-term mean for January*	154.3mm

Notes: NA = Not Available

*Data sourced from Bureau of Meteorology (BOM) website: www.bom.gov.au

BOM stations report rainfall at 9am


Calga Quarry station reports rainfall at midnight.

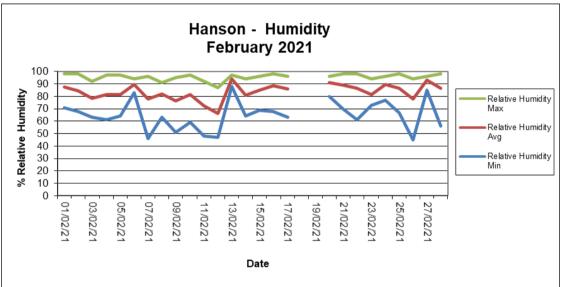
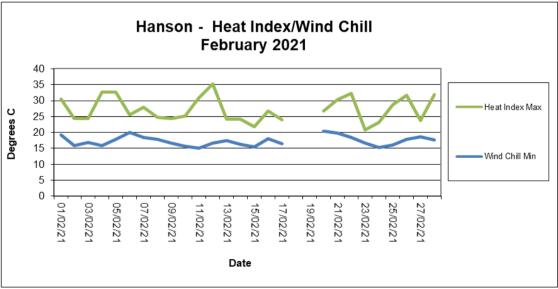
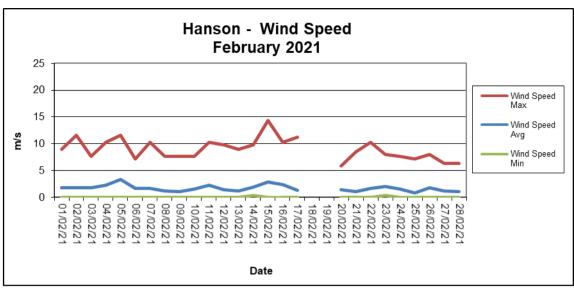
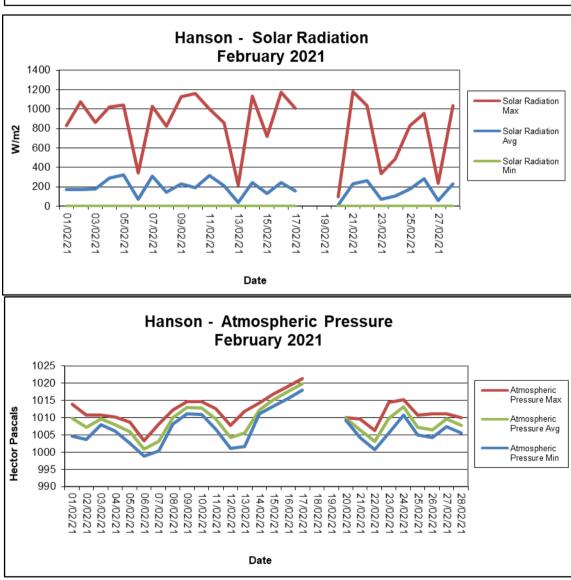
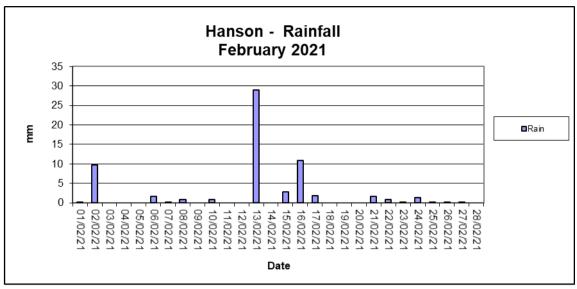
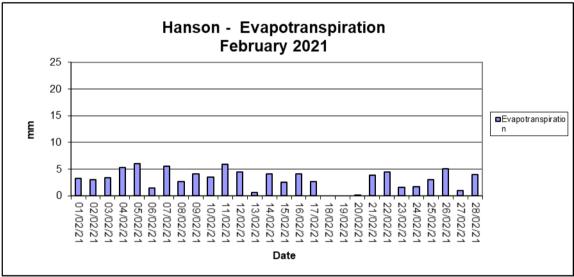

An annual calibration was undertaken on the weather station during April 2020 and is next due in March 2021. Please refer to **Appendix 1**.

 Table 5:
 Summary of Monthly Meteorological Data – February 2021

Date	Temperature Min	Temperature Avg	Temperature Max	Relative Humidity Min		Relative Humidity Max	Rain	Evapotrans piration	Wind Speed Min	Wind Speed Avg	Wind Speed Max	Wind Chill Min	Heat Index Max	Atmospheric Pressure Min		Atmospheric Pressure Max	Solar Radiation Min	Solar Radiation Avg	Solar Radiation Max	Data Min	Data Avg	Data Max
1/02/2021	19.3	22.2	27.7	71.0	87.5	98.0	0.2	3.2	0.0	1.8	8.9	19.3	30.6	1004.6	1009.7	1013.9	0.0	174.6	833.0	79.2	92.4	100.0
2/02/2021	16.9	19.4	24.0	68.0	84.4	98.0	9.8	3.0	0.0	1.8	11.6	15.9	24.4	1003.6	1007.2	1010.7	0.0	170.8	1076.0	77.9	85.9	100.0
3/02/2021	16.9	19.7	24.1	63.0	78.2	92.0	0.0	3.3	0.0	1.8	7.6	16.9	24.4	1008.0	1009.6	1010.7	0.0	177.4	867.0	72.6	82.3	93.4
4/02/2021	15.8	21.8	29.8	61.0	81.2	97.0	0.0	5.2	0.0	2.3	10.3	15.8	32.6	1006.1	1008.0	1010.2	0.0	292.5	1023.0	75.1	82.8	92.7
5/02/2021	17.9	23.4	29.2	64.0	81.5	97.0	0.0	6.0	0.0	3.3	11.6	17.9	32.7	1002.5	1005.8	1008.7	0.0	321.3	1040.0	77.0	85.8	99.1
6/02/2021	20.1	21.9	24.3	83.0	89.4	94.0	1.6	1.4	0.0	1.7	7.2	20.1	25.6	998.8	1000.9	1003.3	0.0	72.2	345.0	80.8	87.3	95.3
7/02/2021	18.4	22.5	28.1	46.0	77.9	96.0	0.2	5.5	0.0	1.7	10.3	18.5	28.0	1000.3	1003.2	1008.2	0.0	308.5	1031.0	73.8	81.5	89.3
8/02/2021	17.9	19.9	24.5	63.0	82.1	91.0	0.8	2.7	0.0	1.2	7.6	17.9	24.8	1008.1	1010.0	1012.2	0.0	146.9	823.0	76.0	82.6	94.0
9/02/2021	16.6	19.9	24.3	51.0	76.2	95.0	0.0	4.0	0.0	1.1	7.6	16.6	24.3	1011.2	1013.0	1014.7	0.0	233.2	1129.0	74.8	84.7	100.0
10/02/2021	15.6	19.2	24.8	59.0	81.5	97.0	0.8	3.5	0.0	1.6	7.6	15.7	25.1	1010.9	1012.7	1014.6	0.0	193.3	1158.0	78.9	86.2	100.0
11/02/2021	15.1	21.4	29.7	48.0	72.1	92.0	0.0	5.9	0.0	2.3	10.3	15.1	30.9	1006.7	1009.7	1012.6	0.0	318.9	1002.0	73.5	84.8	96.8
12/02/2021	16.6	24.3	32.8	47.0	66.3	87.0	0.0	4.5	0.0	1.5	9.8	16.7	35.3	1001.0	1004.3	1007.8	0.0	210.7	855.0	72.2	87.7	100.0
13/02/2021	17.5	20.1	23.2	88.0	94.1	97.0	29.0	0.6	0.0	1.2	8.9	17.5	24.2	1001.6	1005.6	1011.8	0.0	41.2	215.0	79.5	87.2	92.7
14/02/2021	16.2	19.3	24.0	64.0	81.2	94.0	0.0	4.1	0.4	1.9	9.8	16.2	24.2	1011.2	1012.3	1014.3	0.0	246.1	1136.0	80.1	88.2	93.7
15/02/2021	15.4	18.3	21.7	69.0	84.8	96.0	2.8	2.5	0.0	2.9	14.3	15.4	21.9	1013.3	1015.2	1016.9	0.0	129.6	720.0	80.8	88.7	96.8
16/02/2021	18.0	20.8	25.8	68.0	88.4	98.0	10.8	4.1	0.0	2.4	10.3	18.1	26.8	1015.5	1017.6	1019.2	0.0	245.8	1177.0	74.8	90.3	98.1
17/02/2021	16.4	19.1	23.7	63.0	86.1	96.0	1.8	2.7	0.0	1.2	11.2	16.5	23.9	1018.0	1019.9	1021.4	0.0	159.6	1012.0	76.7	88.7	95.3
18/02/2021																						
19/02/2021																						
20/02/2021	20.4	22.0	25.9	80.0	91.0	96.0	0.0	0.2	0.0	1.4	5.8	20.5	26.7	1009.2	1009.8	1010.0	0.0	10.8	99.0	82.3	83.9	87.4
21/02/2021	19.9	22.7	27.8	70.0	89.0	98.0	1.6	3.8	0.0	1.0	8.5	19.9	30.3	1004.2	1006.5	1009.7	0.0	233.4	1179.0	80.8	85.4	91.2
22/02/2021	18.4	22.7	29.6	61.0	86.7	98.0	0.8	4.4	0.0	1.6	10.3	18.4	32.3	1000.7	1003.1	1006.3	0.0	266.4	1032.0	79.2	87.0	94.0
23/02/2021	16.5	18.6	20.6	73.0	81.3	94.0	0.2	1.6	0.4	2.0	8.0	16.6	20.9	1005.6	1009.7	1014.4	0.0	71.3	336.0	71.3	84.2	100.0
24/02/2021	15.5	18.5	22.5	77.0	89.6	96.0	1.4	1.8	0.0	1.5	7.6	15.3	23.2	1010.8	1013.2	1015.3	0.0	106.5	486.0	79.2	85.0	93.1
25/02/2021	16.0	21.2	27.3	67.0	86.3	98.0	0.2	3.0	0.0	0.9	7.2	16.1	28.8	1005.0	1007.2	1010.7	0.0	176.9	829.0	79.5	89.2	97.5
26/02/2021	17.8	22.5	30.1	45.0	78.0	94.0	0.2	5.1	0.0	1.8	8.0	17.8	31.7	1004.2	1006.5	1011.2	0.0	284.5	959.0	68.1	84.0	100.0
27/02/2021	18.6	20.2	22.8	85.0	93.3	96.0	0.2	0.9	0.0	1.2	6.3	18.6	23.8	1007.5	1009.5	1011.2	0.0	58.0	239.0	78.2	87.3	97.8
28/02/2021	17.6	22.6	29.5	56.0	86.3	98.0	0.0	3.9	0.0	1.1	6.3	17.7	31.9	1005.5	1007.8	1010.0	0.0	231.7	1038.0	76.0	82.3	94.6
Monthly	15.1	20.9	32.8	45	84	98	62.4	87.0	0.0	1.7	14.3	15.1	35.3	998.8	1009.2	1021.4	0.0	187.8	1179.0	68.1	86.0	100.0
Unit		grees Celcius (°	C)	,	ge Relative		mm	mm	Metres	per secon	d (m/s)	°C	°C	He	ector Pascals (h	Pa)	Watts pe	r square metr	e (W/m²)	F	Percentage (%)

Insufficient data due to site power outages for 18 and 19 February 2021


Figure 7 Summary of Monthly Temperature, Humidity and Heat Index Results

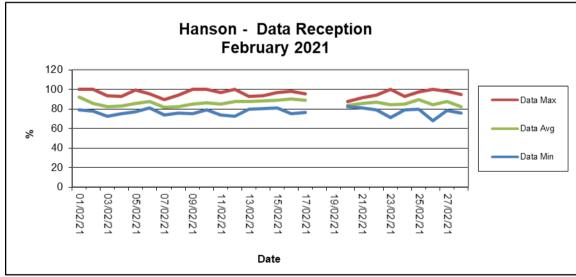


Figure 8 Summary of Monthly Wind Speed, Solar Radiation and Atmospheric Pressure Results

Figure 9 Summary of Monthly Rainfall, Evapotranspiration and Data Reception Results

Frequency plot of the average wind speed and average direction over each 15-minute sampling period. Wind is considered to be calm when at less than a 15-minute average of 1m/s.

Hanson - Windrose

00:15 1 February 2021 to 23:45 17 February 2021 to 00:15 20 February 2021 to 23:45, 28 February 2021

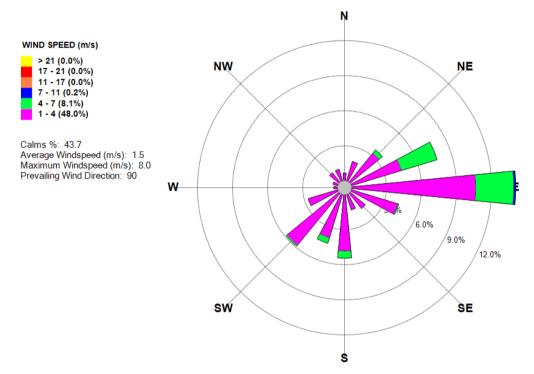


Figure 10: Monthly Windrose Plot – February 2021

The predominant wind for February was from the East with most frequent, strongest winds from the East. The maximum wind speed was 14.3 m/s from the South.

Appendix 1

Field Sheets
Chain of Custody Documentation
Laboratory Analysis Certificates

Client: Hanson Calga Quarry

Date Installed: 4.3.21

Sampled By: A: SM ITH'
L. KING

Site	Time	Water	Insolut	ole Material (🗸 = 🤉		nod etc)	Water	Water	Charles and the comments of th	Funnel Level	New Funnel	Comments
	Collected	Level (mL)	Insects	Bird droppings	Vegetation	Dust	Turbidity	Colour	(Y/N)	(Y/N)	Diameter (mm)	
CD1	10:55	1600	/		/	/		O Bn Gn Gy	Y	7		
CD2C	10.30	1600			/	/	Øsт	O Bn Gn Gy	Y	7		
CD3	9:55 -	1600	/			/		O Bn Gn Gy	Y	>		
CD4	10:15.	1600				/	O S T	O Bn Gn Gy	>	· >		
CD5	10:05.	1600				1	S ST	O Bn Gn Gy	7	Y		
CD6	10:00	1600	/			/	6 ST	O Bn Gn Gy	Y	7		
•												
								-				

Turbidity: C=Clear, S= Slight, T=Turbid (CIRCLE)

Colour: C=Colourless, O=Orange, Bn=Brown, Gn=Green, Gy = Grey (CIRCLE)

Report broken funnels and replacement diameters

Signed:

CLIENT: CBased Environmental Pty L	_td			LABO	RATO	RYB	ATCH NO.:			10,000	100	1000				Pty L	td			
POSTAL ADDRESS: 47 Boomerang		NSW 2325					SAMF	LERS	A.	SMITT	£ .	+ 6.	1016	VC.		to a second second	- 100 + 100 TH 000	SHEET BUILDING STORY		
SEND REPORT TO: monitoringresults@cbased.com.au			OICE TO: acc	ounts@cbased.com.au, m.au			PHON		. 0					ts@cbase	d.com.au					
DATA NEEDED BY: 7 working days										AT: HARD: Ye	S F	AX:	DISK:	BULI	ETIN BOA	RD:	E-MA	IL: Yes		
PROJECT ID: Hanson Calga Dusts										QCS1:		QCS2:		QCS3: Ye	es		QCS4:			
P.O. NO.:	COMMENTS	S/SPECIAL H	ANDLING/STO	DRAGE OR DIPOSAL:										ANALY	SIS REQU	RED				
FOR LAB USE ONLY COOLER SEAL							nsoluable Soldis	ane	ole Matte											
Yes No	Total unless	specified					able	esic	stak			- 1								
Broken Intact COOLER TEMP: deg.C	1						Insolu	Ash Residue	Combustable											NOTES
SAME	PLE DATA			*CONTAINER I	DATA															
SAMPLE ID	MATRIX	DATE ON	DATE OFF	TYPE & PRESERVATIVE	NO.															
CD1	Dust	3.2.21	4.3.21				×	×	×											
CD2c	Dust	3.2.20	4.3.21				х	х	х									- En	viron	mental Division
CD3	Dust	3.2.21	4.3.21				х	х	×										wcas	
CD4	Dust	3.7.21	4.3.24				х	х	x											Order Reference
CD5	Dust	3.2.21	4.3.21				Х	Х	х					\perp				-	FN	2101572
CD6	Dust	3.2.21	4.3.21				Х	Х	х		-			+				=		_ 101012
					11													-		
											+						##	Tele	phone :	+ 61 2 4014 2500
		1	1									_		1	+	\dashv	++	-		
											\top									
	F	RELINQUISH	ED BY:					-	7.		RE	CEIVED	BY	1					METH	OD OF SHIPMENT
NAME: A. SMATH +		M DATE:		10.21.			NAME OF:		S	7					TE: V		nn	\	CONS	GIGNMENT NOTE NO.
NAME :			DATE:				NAME		1					DA		- '-	1		TRAN	SPORT CO. NAME.
OF:			TIME:				OF:				V				ΛE:		7			esses secondula Period de Sindia Comité.
*Container Type and Preservative Cod VC = Hydrochloric Acid Preserved Via																				

AUSTRALIAN LABORATORY SERVICES P/L

CERTIFICATE OF ANALYSIS

Work Order : EN2101572

Client : CBASED ENVIRONMENTAL PTY LTD

Contact : All Deliverables

Address : Unit 3 2 Enterprise Cres

Singleton NSW 2330

Telephone : +61 02 6571 3334 **Project** : Hanson Calga Dusts

Order number C-O-C number

Sampler : A Smith, Leesa King

Site

Quote number : SYBQ/403/18 - COMPASS

No. of samples received : 6 : 6 No. of samples analysed

Page : 1 of 4

> Laboratory : Environmental Division Newcastle

Contact

Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

Telephone : +61 2 4014 2500 **Date Samples Received** : 04-Mar-2021 12:10 **Date Analysis Commenced** : 08-Mar-2021

Issue Date : 15-Mar-2021 17:04

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Zoran Grozdanovski Laboratory Operator Newcastle - Inorganics, Mayfield West, NSW Page : 2 of 4
Work Order : EN2101572

Client : CBASED ENVIRONMENTAL PTY LTD

Project : Hanson Calga Dusts

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

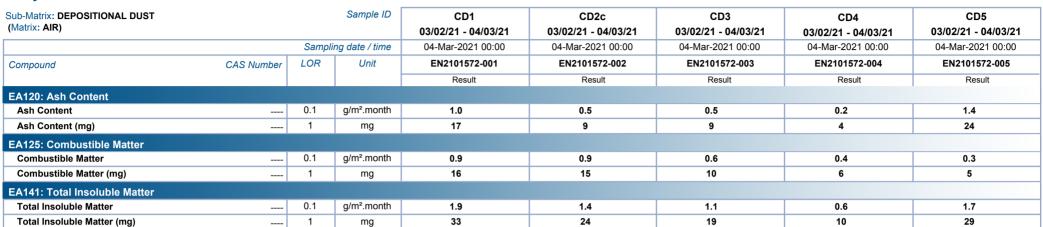
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

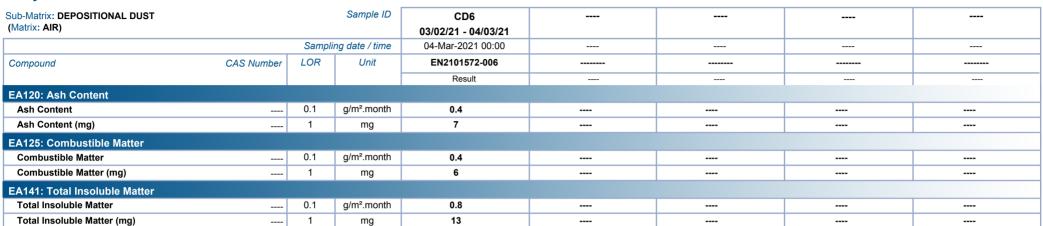

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in g/m².mth as sampling data was provided by the client.

Page : 3 of 4
Work Order : EN2101572

Client : CBASED ENVIRONMENTAL PTY LTD

Project : Hanson Calga Dusts

Analytical Results



Page : 4 of 4 Work Order : EN2101572

Client : CBASED ENVIRONMENTAL PTY LTD

Project : Hanson Calga Dusts

Analytical Results

CBASED ENVIRONMENTAL PTY LIMITED

Date: 3-2-21

Client :

Hanson Calga

Project:

SI	IRF	AC	F W	VAT	ERS
00	71 /1		_ w		

Site	Flow Rate	Odour	Sampling Time	Bottles	Water Turbidity	Water Colour	Comments
A	Dam	NO	10:45	1x 250ml GP, 1x 500mL GP, 1x PG	CST	(C)LOOBG	
3	NO How	NO		1x 250ml GP, 1x 500mL GP, 1x PG	CST	CLOOBG.	
C1	DAM	NO	1.40	1x 250ml GP, 1x 500mL GP, 1x PG	(ĝs t	CLOOBG	
C2	Steady	N3	1.3	1x 250ml GP, 1x 500mL GP, 1x PG	Øs t	C LO O B G	
D	Trickle	NO	4:10	1x 250ml GP, 1x 500mL GP, 1x PG	CS T	(CLOOBG	
F	Dan	100	10:30	1x 250ml GP, 1x 500mL GP, 1x PG	C/S)T	CLOOB(G)	
¥.							
5							

Turbidity: C=Clear, S= Slight, T=Turbid (CIRCLE)

Colour: C=Clear, LO=Light Orange, O=Orange, B=Brown, G=Green (CIRCLE)

Signed: 3kg

Sampled by: Leesa + Maddie

CLIENT: CBased Environmental Pty L	td			ATION		LABO	RATO)RY R	ATC	I NO ·	\$ 1 m	11.00010	"然见"的" "	"一位"的整约线	ST 1735	71 - 7 V 5	The states			HIN SHE	Australian Laborate Services Pty Ltd
POSTAL ADDRESS: PO Box 245 CE		W 2325									mental	Ptv Ltd		(000	er	L	M	ado	10		
SEND REPORT TO: nonitoringresults@cbased.com.au				renae.mikka@cbased.com.au; om.au		PHON								ringresults@	@cbased.	com.au	VVC				
DATA NEEDED BY: 5 working days		REPORT	NEEDED	BY: 5 working days		REPO	RTF	ORMA	AT: H	HARD:	Yes	FAX	K :	DISK:	BULL	ETIN BO	ARD:	E	-MAIL: \	es	
	QUOTE NO .:	SYBQ-403-	-18			QC LE			QCS			Q	CS2:	QC	css: Yes	3		QCS4:			
P.O. NO.:	COMMENTS	/SPECIAL H	ANDLING	STORAGE OR DIPOSAL:										Α	NALYSIS	REQUI	RED				
OR LAB USE ONLY																					
as No	Total unless	specified						1	1							1 1					
roken 8.4 Intact								S	တ္ထ	9						1 1					
OOLER TEMP: deg,C						표	EC	TSS	TDS	0				_ '	1	1 31		60	- 8		NOTES
SAMPLE	DATA			*CONTAINER DATA		ш						_	\perp		Envir	onme	ental	Divisi	on		
SAMPLE ID	MATRIX	DATE		TYPE & PRESERVATIVE	NO.																
Α	Water	3-2-21	10-45	1x 250mlGP,1x 500mLGP,1xP0	3	х	х	х	х	х					Sydn Wo	rk Ord	er Re	ference	E		
В	Water			1x 250mlGP, 1x 500mLGP, 1xPC		X	-X	_X_	_X-	-x-	-				Ë	9	10	378	SO		
C1	Water		1-40	1x 250mlGP,1x 500mLGP,1xP0	3	Х	х	х	х	х						SZ	IU			_	
C2	Water			1x 250mIGP,1x 500mLGP,1xP0		Х	Х	х	х	Х											
D	Water			1x 250mIGP,1x 500mLGP,1xP0		Х	Х	х	х	Х					187		111-3				
F	Water		10.30	1x 250mlGP,1x 500mLGP,1xP0	9	Х	Х	х	х	Х	-	-	+	_			·FIG.	% ጜ፤	11111		
		-				_						-		-				47	11 111	_	
						-		_	-		_	-	+	-	eal	11 1/15		44.5	11111		
						\vdash		-	-	-	-	+	+	-		III W	ANG C	h-1 6	11 111	-	
			+		-	-		-	-	_	_	+-	+-	_	-		. 0 070	. 0555			
		_									-	+	+	-	Telepho	ne: + 6	1-2-8/8	1 8000		-	
		 				_	-	-				+-	+-+	-							
			+				-		-	-	+	+-	+-+				-	+	_	+	
		+	+					\neg	\rightarrow	-	-	+-	+				_	+	_	+	
		1		TOTAL BOTTLES:					\neg	\neg		+	+		_		+	+		1	
	e RFI	INQUISHED		1017/12 2011 12201								RECE	IVED BY	,				+			METHOD OF SHIPN
AME: Leesa 16	Zine	IIIQOIOTIED	DATI	E: 4-2-21		NAME	N	M	-	04/	02/2	2-1	3.		DATE		_	1			CONSIGNMENT NO
F: CBased Environmental	1100			ME: 3.10		OF:		191		7	7			-	TIME			1			
AME :			D/	ATE:		NAME	:								DATE						TRANSPORT CO. N
F:				IME:		OF:								11-311/0-2-7	TIME		-100-11-11	7			

AUSTRALIAN LABORATORY SERVICES P/L

CERTIFICATE OF ANALYSIS

Work Order : ES2103780

: CBASED ENVIRONMENTAL PTY LTD

Contact : All Deliverables

Address : Unit 3 2 Enterprise Cres

Singleton NSW 2330

Telephone : +61 02 6571 3334 Project : Hanson Quarry SW

Order number C-O-C number

Sampler : Leesa King, Maddie Brown

Site

Client

Quote number : SYBQ/403/18 - COMPASS

No. of samples received : 5 : 5 No. of samples analysed

Page : 1 of 2

> Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555 **Date Samples Received** : 04-Feb-2021 15:15

Date Analysis Commenced : 04-Feb-2021

Issue Date · 10-Feb-2021 15:21

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Accreditation Category Position

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW **Gregory Towers Technical Officer** Chemistry, Newcastle West, NSW Neil Martin Team Leader - Chemistry Chemistry, Newcastle West, NSW

Page : 2 of 2 Work Order : ES2103780

Client : CBASED ENVIRONMENTAL PTY LTD

Project : Hanson Quarry SW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- TDS by method EA-015 may bias high for various samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Α	C1	C2	D	F
		Sampli	ng date / time	03-Feb-2021 10:45	03-Feb-2021 13:40	03-Feb-2021 13:35	03-Feb-2021 16:10	03-Feb-2021 10:30
Compound	CAS Number	LOR	Unit	ES2103780-001	ES2103780-002	ES2103780-003	ES2103780-004	ES2103780-005
				Result	Result	Result	Result	Result
EA005: pH								
pH Value		0.01	pH Unit	5.65	5.63	6.44	6.60	5.03
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	91	94	98	95	87
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	80	69	64	73	56
EA025: Total Suspended Solids dried at	104 ± 2°C							
Suspended Solids (SS)		5	mg/L	<5	5	16	<5	20
EP020: Oil and Grease (O&G)								
Oil & Grease		5	mg/L	<5	<5	<5	<5	<5

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle - Water, NATA accreditation no. 825.

(WATER) EA005: pH

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

Date: 3.2-21

Client: Project: Hanson Calga **Bi-Monthly Bores** **GROUNDWATERS**

Site	Time	DEPTH	Typical Depth (m)	Odour	Water Turbidity	Water Colour	1		2		Downloaded	Comments
							pН	EC	pН	EC	Logger? (Y/N)*	
CQ3	10.30	10-95	10.74	NO	O ST	⊘ LO O B G	606	92-345	6.64	89-60	yes	
Q4	11.50	10.98	11.19	Non	⊘ S T	⊘ LO O B G	5-64	114-145		114.50	463	
CQ5	12-10	6-29	8.04	NU	ØST.	⊘ LOOBG	4.09	214.40	4.06	211.145	Commence and the commence of t	
Q7	12.05	5.96	6.61	yes	⊘ s ⊤	€)LO O B G	6.02	202. lus	5.59	214- Zus	yes	Fishy! hair inv
CQ8	12.20	5-88	6.93	L Yes	Øsт	C LOOBG	4.54	110.345	4.48	113-44	120	Fishy Smell with
Q10	11.15	24-69	25.86	HIZ	OST	€ LOOBG	5.45	105-8w	5.42	106.245		
Q11S	11-35	11.21	12.1	L12°	©s t	€ LO O B G	5.64	130.145	5.65	141-44	yes	
Q11D	11-25	12-93	12.98	H 25	⊘ ST	© LO O B G	5-13	125-8us	5-14	124-8W	yes	j.
Q12	11-30	3.97	5.46	20	©s t	© LOOB G	4-30	117 -443	4. 28	126.44		
Q13	12.45	12-39	14.42	NO	© S T	⊘ LO O B G	4-27	130-1w	4.30		yes	
P4	12-55	2.43	10.56	40	C)S T	 € C C C C C C C C C C	4-63	180.60s	4-61	182-Sus		\$ E
P5	1:05	6.67	7.95	100	C)ST	(CLO O B G	6.05	83.2 W	6.09	.84. ler		
CP6	1:00	6.01	10.73	NO	(C)S T	(CLOOBG	4-39	119.8us	4.36	117.8 mg		
P7	1-15	2.23	3.47	NO	(c)s T	CLO O B G	5-72	97-50	5.68	97-2ms		
CP8	4.25	20.97	22.36	. 100	C/S T	Q LO O B G	443	88- 2us	4-45	87-645		ar'
P13**	4-40		13.4	100	©s T	(C)LO O B G	4.99	114-1-4	4.46	111- Ou		
P15	61.25	2.68	3.01	No	Ø S T	⊘ LO O B G	5.45	106-445	5.46	106.5us		
1W7	7:30	12.70	15.3	NO.	© ST	(QLOOBG	5.72	28.0 LS	5.75	29:74	NO	
1W8	3140	6.60	7.66	/٧0	C S T	CLOOBG	5-14	45.9ms	5.10	44.9 us	yes.	
1W9	11:00	23.29	24.09	NO	ØST	Ø LO O B G	4.50	67-845	4.49	67.545	yes	5
1W10	2:45	10.67	11.44	ano	(CST	CLOOBG	4.50	90. 7mg	4.48	91.845	uses.	
1W13	3:15	8.90	7.71	NO	(C)S T	CLOOBG	4.48	81.4uc	4.47	81.2m	0	
/W16	3:00	8.20	8.29	NO	C)S T	(QLOOBG	4 ale	89.7mg	4.45	90.300		
1W17	12 · 50		9.93	No	(C)ST	(OLOOBG	4.06	92.145	407	Q4.700		

Colour: C=Clear, LO=Light Orange, O=Orange, B=Brown, G=Green (CIRCLE)

*If unable to download logger please provide comment/ explanation above

Sampled by: Leesa + maddle

**Contact Wynston 15 min prior to access on: 0414 900 555

* Needs clearing."

* Cas logger has been removed facility

* MW7 "