

Carbon Based Environmental Pty Limited ABN 74 102 920 285

Rocla Quarry Products Calga Quarry

Environmental Monitoring

Dust Deposition Gauges, Surface and Ground Waters and Meteorological Station

November 2012

Colin Davies BSc MEIA CENVP **Environmental Scientist**

28 December 2012

© Carbon Based Environmental Pty Limited 2012. This document was prepared solely for the original recipient and no third party must rely on or use any information without the consent of Carbon Based Environmental Pty Limited. Carbon Based Environmental Pty Limited and the author accept no responsibility to any third party who uses or relies upon the information contained in this report.

Executive Summary

Carbon Based Environmental is contracted by Rocla Quarry Products to conduct environmental monitoring at the Calga Sand Quarry.

The monitoring includes;

- · Dust Deposition Gauges;
- Surface Waters:
- · Groundwaters; and
- Meteorological Station.

This report was prepared by Carbon Based Environmental and includes the following;

- Dust Deposition results for November 2012;
- Surface Water quality results for November 2012;
- Groundwater depth and quality results for November 2012; and
- Meteorological report for November 2012.

The November 2012 dust deposition results for insoluble solids were generally higher when compared to those of October 2012. All sites, on a rolling annual average basis, are currently below the Air Quality Management Plan exceedance level of $3.7g/m^2$.month. Results were found to be representative of dust levels as determined by the Australian Standard.

Surface water samples were collected for the normal monthly sampling event on the 29 November 2012 at sites A and F. Sites B and D were dry and Site C was inaccessible and unable to be sampled. At the time of sample collection, there was no water discharge observed from the site. Results show generally good water quality with all sites sampled maintaining steady pH within the slightly acidic range, and low Electrical Conductivity, Total Dissolved Solids and Total Suspended Solids. Oil and Grease was not detected at any site.

Groundwaters were sampled for normal monthly monitoring on 29 November 2012. Groundwater depths generally increased across the bores compared to last month with water moving away from the surface. Groundwater pH and EC levels remained relatively stable.

The meteorological station data recovery for the month was approximately 100%. No wind data is available from the 1-22 November due to a technical problem. Recorded rainfall on site for November was 58.2 mm, which was lower than the Peats Ridge long-term average for November. No data is available, for comparison in November, at the Peats Ridge BOM station. Results are detailed below:

Rocla Calga Quarry

BOM Peats Ridge*

BOM Gosford*

BOM Peats Ridge Long term mean for November*

58.2 mm

Not Available
63.8 mm

107.0 mm

Note: Differences in the daily rainfall readings between BOM and the Rocla station may occur due to BOM stations reporting rainfall at 9am and the Rocla station recording rainfall at midnight.

^{*}Data sourced from Bureau of Meteorology (BOM) website (www.bom.gov.au).

1.0 Sampling Program

Rocla Calga Quarry conducts environmental monitoring in accordance to Development Consent, OEH (EPA) licence and Environmental Management Plans. Carbon Based Environmental are contracted to undertake dust deposition gauge, surface and groundwater and meteorological monitoring for the project. Carbon Based Environmental commenced monitoring from the April 2006 monitoring period.

Dust deposition gauges are operated to the Australian Standard AS3580.10.1 – Methods for Sampling and Analysis of Ambient Air Method 10.1 Determination of Particulates—Deposited Matter—Gravimetric Method". Sampling is undertaken every 30 +/- 2 days and each gauge is analysed for insoluble solids and ash residue. The results are reported as g/m^2 . month.

Surface waters are sampled in accordance with Australian Standards AS5667.1 —Guidance on the Design of Sample Programs, Sampling Techniques and the Preservation and Handling of Samples", AS5667.6 —Water Quality Sampling—Guidance on sampling of rivers and streams" and AS5667.4 —Water Quality Sampling—Guidance on sampling from lakes, natural and man-made". Surface water monitoring sites include local streams and dams. Basic analysis including pH, Electrical Conductivity, Total Suspended Solids, Total Dissolved Solids and Total Oil and Grease is conducted monthly at Sites A and F (dams) and when Sites B, C and D are flowing. Additional samples are collected when daily rainfall exceeds 50mm.

Groundwaters are sampled in accordance with Australian Standards AS5667.1 -Guidance on the Design of Sample Programs, Sampling Techniques and the Preservation and Handling of Samples" and AS5667.11 -Water Quality Sampling—Guidance on sampling of ground waters". Groundwater monitoring sites are sampled at least bi-monthly for water quality and at least quarterly for water level. Groundwater monitoring loggers continuously record water levels in a selection of bores.

Meteorological monitoring is conducted at the quarry and displayed on the site computer with a real time display. Wind parameters are measured according to Australian Standard AS 2923 - Ambient Air — Guide for Measurement of Horizontal Wind for Air Quality Applications".

The weather stations have the following sensor configuration; Air temperature

- Humidity
- Rainfall
- Atmospheric pressure
- Evaporation
- Solar radiation
- Wind speed
- Wind direction

Carbon Based Environmental continued to operate the monitoring equipment and utilise site collections at their existing locations.

The locations of monitoring points are provided in **Figure 1**.

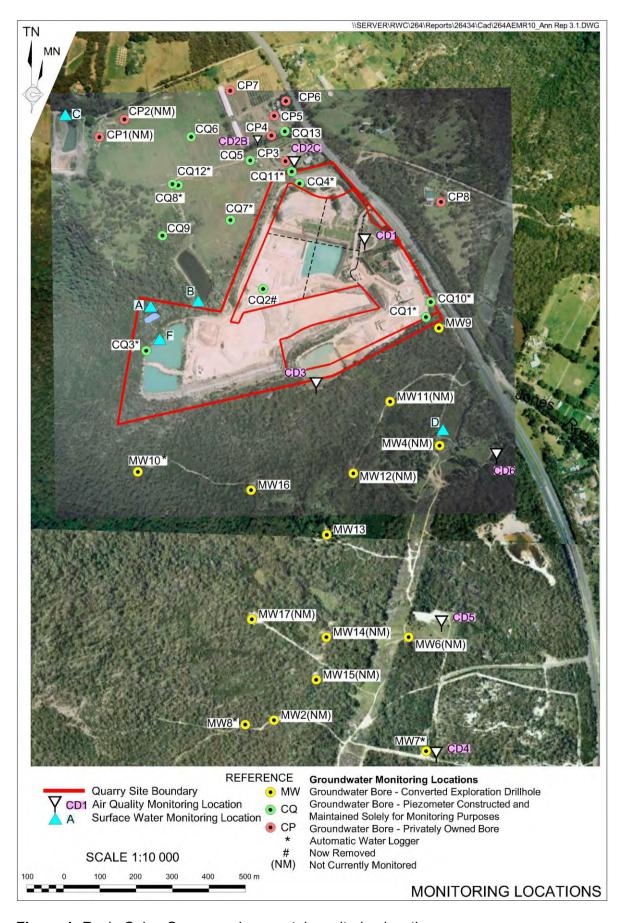


Figure 1: Rocla Calga Quarry environmental monitoring locations

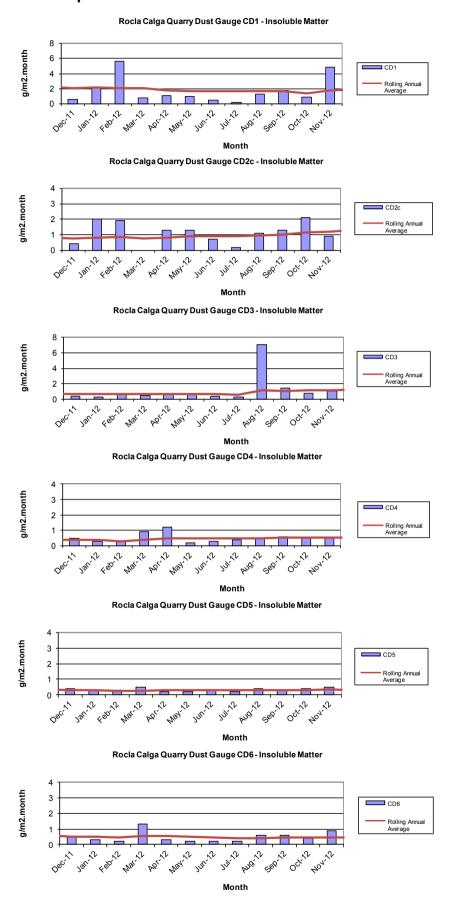
2.0 Monthly Results

2.1 Dust Deposition Gauges

Table 1 displays the results for November 2012 and the project 12 month rolling average. Results are in g/m².month.

Table 1: Dust Deposition results: 31 October 2012 – 29 November 2012 (29 days)

Site	Monthly Insoluble Solids g/m².month	Monthly Ash Residue g/m².month	Monthly Combustible Matter g/m².month	Monthly Ash Residue/ Insoluble Solids %	Rolling Annual Average Insoluble Solids g/m².month
CD1	4.9	4.6	0.3	94	1.7
CD2c	0.8	0.8	<0.1	100	1.2
CD3	1.1	1.0	0.1	91	1.2
CD4	0.5	0.2	0.3	40	0.5
CD5	0.5	0.2	0.3	40	0.3
CD6	0.9	0.4	0.5	44	0.5


Insoluble Solids marked with an * indicate an excessively contaminated gauge. Contamination can include bird droppings, vegetation (such as plant matter, algae, pollen and seeds) and insects. Results in bold indicate insoluble solids levels above 3.7 g/m².month; the Development Consent's annual average amenity criteria at residential locations. The current rolling annual average is calculated from December 2011 to November 2012.

NA= Not Available.

CD1 was installed on the 1 May 2006. CD2a was discontinued at the start of August 2006 due to quarry operations -mining out" the site of the gauge. The replacement gauge, Site CD2b, was located in a position adjacent to the boundary between B. Kashouli and F. & J. Gazzana in conformance with the Air Quality Management Plan. CD4 was installed on 3 October 2006, to gauge air quality impacts to the south of the site operations, as were CD5 and CD6 which were installed on the 14 December 2006. CD2b was discontinued at the end of January 2010 due to contamination of the gauge by non-quarry related vehicle movements on a track adjacent to the gauge. The replacement gauge, CD2c, was located on a rehabilitated section of land between the extraction area and adjacent resident.

Dust deposition charts for all dust gauge sites appear in **Figure 2** below. The laboratory analysis is provided in **Appendix 1**.

Figure 2: Dust Deposition Charts

2.2 Surface Water Monitoring

Monthly surface water monitoring was conducted on the 29 November 2012 and results are listed in **Table 2**. The laboratory analysis sheets are provided in **Appendix 1**.

Table 2: Monthly surface water monitoring - November grab sample results

Site	Observed Flow Rate	Water Colour	Turbidity	рН	EC (μS/cm)	TDS (mg/L)	TSS (mg/L)	Oil and Grease (mg/L)
Α	Still	Brown	Slight	6.75	76	62	7	<5
В				Dry				
С				No Acc	ess			
D				Dry				
F	Still	Clear	Clear	6.49	65	43	<5	<5

At the time of sampling, there were no water discharges off site from any sampling location observed. Samples were collected at sites A and F. Site C was inaccessible and Sites B and D were dry and unable to be sampled this month. The samples were collected and analysed for a monthly sampling event. Results show pH within the slightly acidic to neutral range, low Electrical Conductivity, low Total Dissolved Solids and low Total Suspended Solids. Oil and Grease was not detected at any site.

2.3 Groundwater Monitoring

Groundwaters were sampled on 29 November 2012. Water quality tests for pH and electrical conductivity were conducted by Carbon Based Environmental Pty Limited. For water quality purposes, water was purged from the bore until constant pH (+/- 0.1 pH units) and Electrical Conductivity (+/- 5%) was obtained between samples. Data is displayed in **Table 3** and **Figures 3 to 6**.

Groundwater depth generally increased across the sampled groundwater bores compared to last month indicating water moving away from the surface. The only exception was CQ3 which decreased in water depth.

pH levels were generally similar when compared to last month and in the acidic range, except for CQ1 which decreased and was in the neutral range. EC levels remained low and relatively stable compared to the results obtained in October 2012.

Table 3: Groundwater Quality Data

Reference	Bore	Туре	Depth to water TOC (m) April 06	Depth to water TOC (m) This report	pH This report	Electrical Conductivity (μS/cm) This report
CQ1	Voutos	* Monitor	20.59	17.06	6.5	78
CQ3	Voutos	* Monitor	10.53	10.39	5.8	110
CQ4	Voutos	* Monitor	8.78	10.60	4.2	87
CQ5	Gazzana	DIP Only	8.69	7.67	3.6	185
CQ6	Gazzana	DIP Only	16.00	11.35	3.6	215
CQ7	Gazzana	* Monitor	6.89	7.01	3.9	98
CQ8	Gazzana	* Monitor	11.03	6.47	3.8	152
CQ9	Gazzana	DIP Only	10.10	9.34	3.6	109
CQ10	Voutos	* Monitor	NI	22.01	4.6	168
CQ11S	Gazzana	* Monitor	NI	10.66	3.9	164
CQ11D	Gazzana	* Monitor	NI	11.89	4.3	154
CQ12	Gazzana	* Monitor	NI	5.03	3.8	131
CQ13	Kashouli	* Monitor	NI	13.55	4.3	212
CP3	Gazzana	Domestic	10.40	8.97	4.1	156
CP4	Kashouli	Domestic	13.63	10.81	4.5	167
CP5	Kashouli	Domestic	16.61	8.51	4.0	211
CP6	Kashouli	Domestic	16.27	11.24	3.9	204
CP7	Kashouli	Production	8.56	4.05	4.3	201
CP8	Rozmanec	Domestic	22.17	NR	NR	NR
MW7	Rocla Bore	* Monitor	15.76	16.77	4.2	113
MW8	Rocla Bore	* Monitor	9.82	7.82	4.3	82
MW9	Rocla Bore	* Monitor	22.44	21.43	4.3	87
MW10	Rocla Bore	* Monitor	15.41	13.30	4.1	125
MW13	Rocla Bore	DIP Only	NI	8.32	4.2	100
MW16	Rocla Bore	DIP Only	NI	9.02	4.4	111

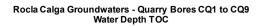
Notes:

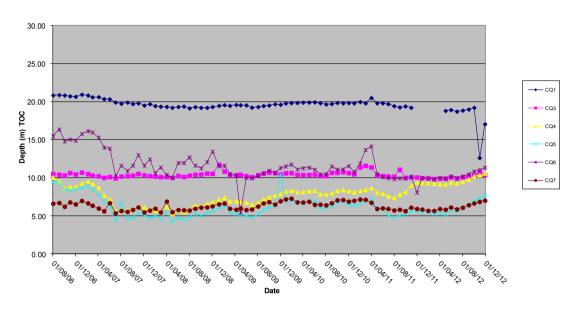
TOC = Water level measured from top of bore case to water.

NM = Not Monitored – unable to sample water due to access restrictions.

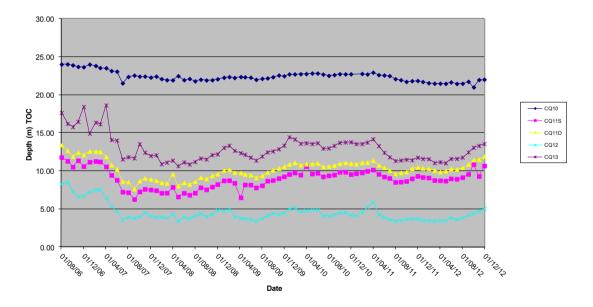
NR = Not Required by resident.

NI = These bores were not installed in April 2006 but are now operational. April 2006 was the first set of measurements taken by Carbon Based Environmental Pty Limited.

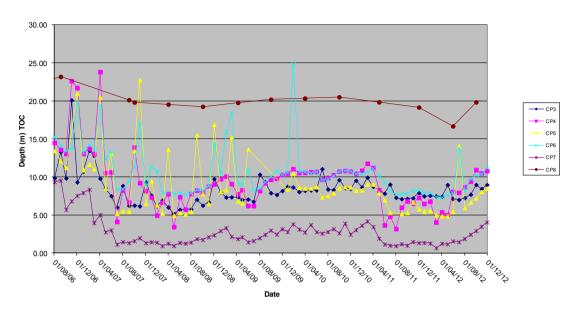

Shading is used to indicate the following trends in water depth (compared to the last reading):

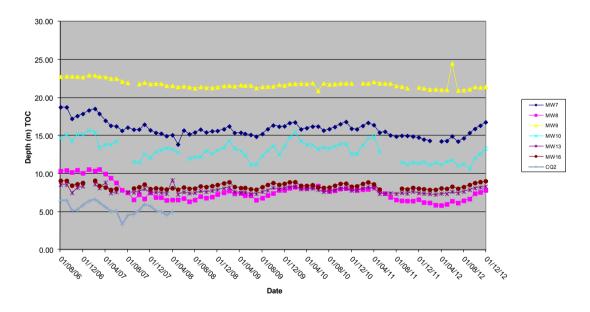

	Increase to ground water depth (water moved away from surface)
	Decrease to ground water depth (water moved towards surface)
	Stable water depth (+/- 0.01m)

Available groundwater loggers were downloaded and will be forwarded to the Rocla Calga Quarry groundwater consultant.


^{* =} Logger Installed.

Figures 3 to 6: Groundwater Depth Charts.




Rocia Calga Groundwaters - Quarry Bores CQ10 to CQ13 Water depth TOC

Rocla Calga Groundwaters - Quarry Bores CP3 to CP8 Water Depth TOC

Rocla Calga Groundwaters - Quarry Bores MW7 to MW16 Water Depth TOC

2.4 Meteorological Monitoring

The Rocla Calga Quarry weather station data recovery in November was approximately 95%. No wind data is available from the 1-22 November due to a technical issue with field equipment. The weather station data follows and includes;

- Monthly data numerical summary;
- Weather charts of air temperature, humidity, heat index and wind chill, atmospheric pressure, solar radiation, evapotranspiration, rain, wind speed and data reception; and
- Wind rose (frequency distribution diagram of wind speed and direction).

Monthly weather statistics from two nearby Bureau of Meteorology (BOM) stations, Peats Ridge and Gosford are included in **Appendix 2** for comparison purposes. Data from the Peats Ridge BOM station for November 2012 was incomplete.

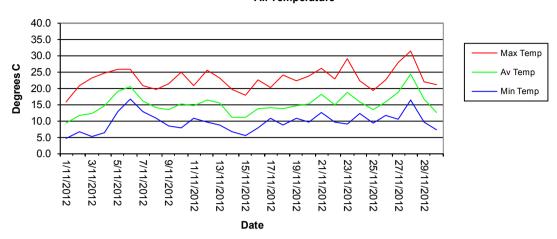
Data for November 2012 shows that rainfall recorded at the Rocla Calga Quarry was slightly lower than the Gosford BOM station recorded rainfall. Data is unavailable for Peats Ridge BOM station in November. Recorded rainfall at Rocla Calga Quarry was lower than the Peats Ridge long term mean rainfall for November. The rainfall comparison is provided below:

Rocla Calga Quarry 58.2 mm
BOM Peats Ridge* NA
BOM Gosford* 63.8 mm
BOM Peats Ridge Long term mean for November* 107.0 mm

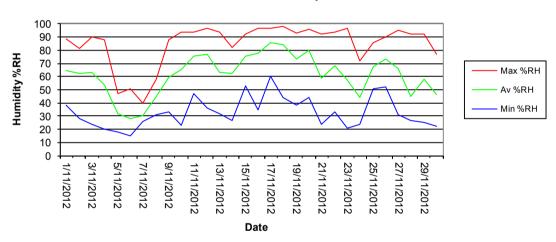
Results are displayed in the following table and figures.

^{*}Data sourced from Bureau of Meteorology (BOM) website (www.bom.gov.au).

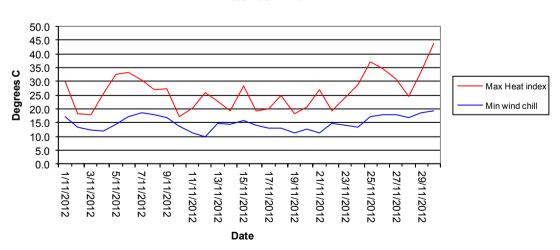
2.4.1 Monthly Meteorological Data Summary

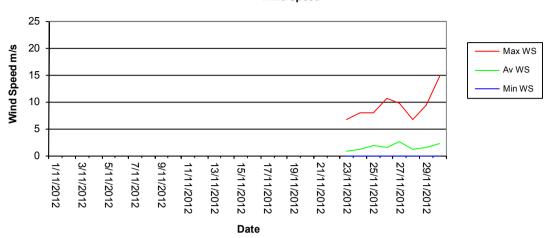

Summary Nov-12 Rocla - Calga

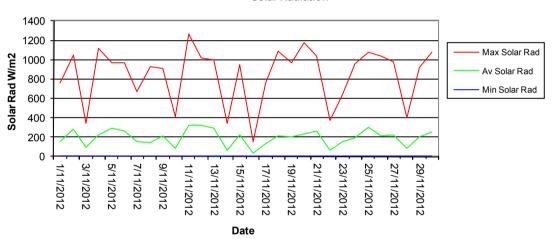
Date	Min Temp	Av Temp	Max Temp	Min %RH	Av %RH	Max %RH	RAIN mm	ET mm	Min WS	AvWS	Max WS	Min wind chill	Max Heat index	Min Atm P	Av Atm P	Max Atm P	Min Solar Rad	Av Solar Rad	Max Solar Rad	Min Data %	Av data %	Max Data %
1/11/2012	4.6	9.4	15.7	38	64	89	0.0	3.0				17.4	30.2	999.7	1005.8	1012.0	0	149.6	763	98.5	99.9	100
2/11/2012	6.7	11.8	20.9	28	62	81	0.0	4.2				13.4	18.3	1006.8	1012.7	1018.2	0	280.3	1047	93.3	99.3	100
3/11/2012	5.3	12.4	23.2	24	63	90	0.8	1.4				12.3	17.8	1017.3	1019.1	1020.7	0	89.8	345	86	98.6	100
4/11/2012	6.5	14.8	24.6	20	53	88	0.4	3.5				12.1	25.5	1015.0	1017.9	1020.5	0	227.5	1120	95.6	99.3	100
5/11/2012	13.0	19.1	25.7	18	32	47	0.0	4.7				14.3	32.7	1013.6	1015.6	1018.0	0	296.3	973	96.5	99.8	100
6/11/2012	16.6	20.6	25.8	15	28	51	0.0	4.5				17.4	33.4	1010.4	1013.0	1015.3	0	258.7	968	96.2	99.8	100
7/11/2012	12.8	16.2	20.8	26	30	40	2.6	2.5				18.6	30.4	1006.7	1010.5	1013.0	0	151.0	674	96.5	99.8	100
8/11/2012	10.7	14.1	19.8	31	45	58	11.6	2.4				17.8	27.0	1006.8	1010.6	1014.0	0	148.8	928	93.3	99.6	100
9/11/2012	8.4	13.5	21.3	33	59	88	10.0	3.0				16.9	27.4	1011.0	1013.1	1017.6	0	208.6	904	93.6	99.2	100
10/11/2012	7.9	15.1	24.9	23	65	94	0.0	1.2				13.6	17.1	1017.7	1021.8	1026.2	0	87.3	409	95.6	99.1	100
11/11/2012	10.9	14.5	20.8	47	76	94	0.0	4.3				11.2	20.3	1024.3	1026.2	1027.6	0	319.5	1263	95.3	99.4	100
12/11/2012	9.8	16.4	25.4	36	77	97	0.0	4.9				9.8	26.1	1016.9	1021.4	1026.9	0	326.0	1019	94.2	98.5	100
13/11/2012	8.9	15.7	23.3	32	63	94	0.0	4.3				14.7	22.7	1014.6	1018.1	1021.1	0	296.4	996	98	99.6	100
14/11/2012	6.8	11.2	19.7	27	63	82	0.4	0.9				14.3	19.3	1015.2	1017.6	1020.4	0	63.6	346	89.2	99.1	100
15/11/2012	5.5	11.1	18.0	53	75	92	0.0	3.6				15.7	28.3	1008.4	1012.1	1017.4	0	224.8	951	94.2	99.5	100
16/11/2012	7.8	13.7	22.7	35	78	97	19.6	0.5				14.1	19.4	1008.3	1010.4	1014.3	0	30.6	153	91.8	99.1	100
17/11/2012	10.8	14.1	20.2	60	86	97	0.0	1.9				13.0	20.2	1013.3	1014.5	1016.0	0	135.9	757	88.3	99.0	100
18/11/2012	8.9	13.8	24.2	44	84	98	0.0	3.3				12.9	25.1	1005.2	1010.3	1014.3	0	211.4	1086	97.4	99.6	100
19/11/2012	10.7	14.5	22.3	38	73	93	0.0	2.9				11.2	18.3	1011.5	1014.4	1019.3	0	202.7	968	94.7	99.0	100
20/11/2012	9.7	15.4	23.9	44	80	96	0.6	3.4				12.8	20.6	1018.7	1020.4	1021.9	0	232.8	1172	92.7	99.3	100
21/11/2012	12.7	18.3	26.1	24	59	92	0.0	4.0				11.5	27.0	1009.1	1014.0	1019.6	0	261.8	1037	90.9	99.3	100
22/11/2012	9.8	15.0	23.0	33	68	94	0.0	1.1		^ 7	0.7	14.7	19.2	1009.1	1015.5	1019.3	0	65.8	374	94.2	99.6	100
23/11/2012	9.1	18.7	29.0	21	57	97	0.4	2.8	0	0.7	6.7	14.2	24.3	1016.8	1018.2	1019.3	0	156.9	645	81	99.4	100
24/11/2012	12.2	15.9	22.4	24	44	72	0.0	3.6	0	1.2	8	13.4	28.6	1011.8	1015.3	1018.6	0	192.5	959	92.4 100	99.9	100
25/11/2012 26/11/2012	9.4	13.6 16.0	19.4 22.7	51 52	68	86	0.0	6.3	0	1.8	8 10.7	17.2 17.8	37.0 34.7	1010.8 1010.3	1012.1	1013.7	0	300.2 208.7	1082 1034		100.0	100 100
27/11/2012	10.6		27.8		73	90	1.0	4.0	0	1.6 2.6		17.8	34.7	1010.3	1012.9	1014.6	0	221.3		98.8	99.9	
		18.7 24.3		31 27	66	95 92	3.8	4.3	0		9.8 6.7	17.0	24.7	1013.5	1013.2 1015.6	1019.1 1017.6	0	81.3	974	92.4	99.9	100
28/11/2012 29/11/2012	16.5 9.8	16.8	31.3 21.9	25	45 58	92	3.6 0.4	1.3 4.0	0	1.1	9.4	17.0	33.5	1013.5	1015.6	1017.6	0	208.5	922	94.3 94.9	99.8	100 100
30/11/2012	7.4	12.6	21.1	22	46	77	3.0	5.5	0	2.3	14.8	19.3	43.7	1007.8	1010.8	1013.8	0	249.3	1076	97.7	99.9	100
30/11/2012	7.4	12.0	۷۱.۱		40	11	3.0	0.0	U	2.3	14.0	19.3	43.1	1007.0	1010.0	1013.1	U	249.3	1070	91.1	33.3	100
Monthly	4.6	15.3	31.3	15	61	98	58.2	97.2	0	1.6	14.8	9.8	43.7	999.7	1014.9	1027.6	0	196.3	1263	81	99.5	100

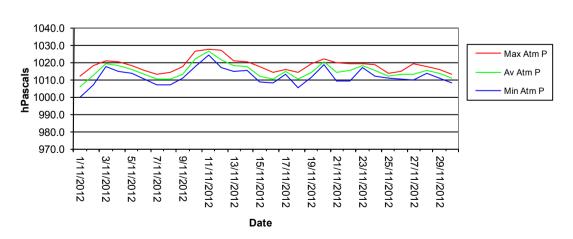

No data available

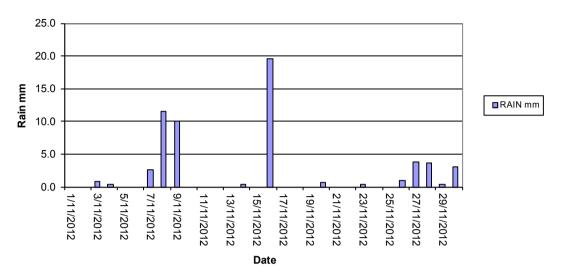
2.4.2 Monthly Weather Charts

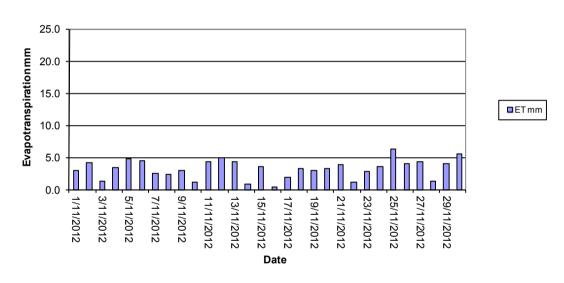

Rocla Calga Quarry - November 2012 Air Temperature

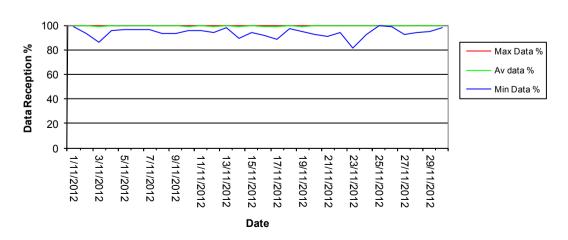

Rocla Calga Quarry - November 2012 Humidity


Rocla Calga Quarry - November 2012 Heat Index/Wind Chill

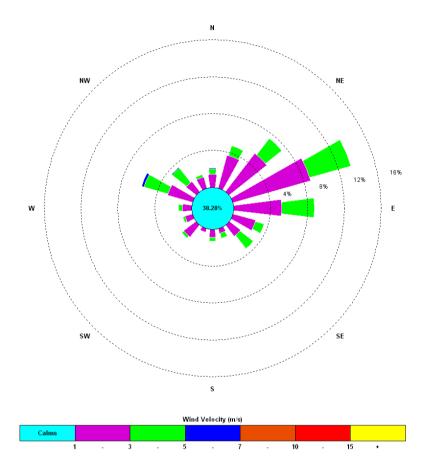

Rocla Calga Quarry - November 2012 Wind Speed


Rocla Calga Quarry - November 2012 Solar Radiation


Rocla Calga Quarry - November 2012 Atmospheric Pressure


Rocla Calga Quarry - November 2012 Rainfall

Rocla Calga Quarry - November 2012 Evapotranspiration



Rocla Calga Quarry - November 2012 Data Reception

2.4.3 Monthly Windrose Plot

Frequency plot of the average wind speed and average direction over each 15 minute sampling period. Wind is considered to be calm when less than a 15 minute average of 1m/s.

15:00, 23 November 2012 – 23:45, 30 November 2012

The predominant winds were from the NNE, with strongest winds from the WNW. The maximum wind speed was 14.8 m/s from the WSW.

Appendix 1 Laboratory Certificates

DEPOSITIONAL DUST MONITORING

Client: Rocla Calga Quarry

Date Installed: 31- 10-12 Date Collected: 29-11-12

Collection Start Time: 7.55

Collection Stop Time: 10.40

Sampled By: Leesa King Jill peterson

Sampling ID:

Site	Time	Water	Insolu	ble Material (🗸 = :	slight, 🗸 🗸 = n	nod etc)	Water	Water	Stand Level	Euppel Level	N. F.	
D1	Collected	Level (mL)	Insects	Bird droppings	Vegetation	Dust	Turbidity	Colour	(Y/N)	Funnel Level (Y/N)	New Funnel Diameter (mm)	Comments
D1	7.50	1100ml	/		/	/	O ST	O Bn Gn Gy	ч	4	Diameter (mm)	
CD2C	10.40	1190n1				1	O S T	©0 Bn Gn Gy	,	7		
D3	8.52	1100ml	/		/	1	-	© Bn Gn Gy		4		
D4	10.12	1100ml	1		/	/	©s T	©O Bn Gn Gy	-	4		
D5	10.00	1100m1	/		~	1		(C)O Bn Gn Gy	4	4		
D6	9.15	1100ml	V		/	./		© Bn Gn Gy	4	.9		
						~	CST		4,	4		
							CST	C O Bn Gn Gy	,	,		
								C O Bn Gn Gy				
							CST	C O Bn Gn Gy				
							CST	C O Bn Gn Gy				
							CST	C O Bn Gn Gy				
							CST	C O Bn Gn Gy				
							CST	C O Bn Gn Gy				
							CST	C O Bn Gn Gy				
							CST	C O Bn Gn Gy				
							CST	C O Bn Gn Gy				
								C O Bn Gn Gy			_	
								C O Bn Gn Gy				
								C O Bn Gn Gy			1-1	
								C O Bn Gn Gy				
rhidity: C-0	Clear, S= Slight	T. T. 1:1/0:0					CSI	C O Bn Gn Gy				

Colour: C=Clear, O=Orange, Bn=Brown, Gn=Green, Gy = Grey (CIRCLE)

Report broken funnels and replacement diameters

arbon Based Environmen						LAB	ORAT	ORY	BATC	H NO.:								Australian Laborator
DDRESS: 47 Boomerang	St CESSNO	CK NSW 232	5							ased Envir	onmental F	Ptv I td						Services Pty Ltd
ORT TO: Colin Davies, F	Renae Mikka	SEND INV	DICE TO: Cart	on Based Environmental					04443		FAX: 02		42	E MAII cabas	-101:			
DED BY: 7 working days		REPORT	EEDED BY: 7	working days		REP	ORTE	ORI	MAT.	HARD: Ye			DISK:	E-MAIL: cbas				bigpond.com
D: Rocla Calga Dusts	QUOTE NO.	: SY/269/10					EVEL		QCS			CS2:		BULLETIN BOAR			L: Yes	
	COMMENTS	SPECIAL H	ANDLING/STO	RAGE OR DIPOSAL:					400		Q	002.				CS4:		
SE ONLY	also email o	based1@big	pond.com			Soldis		Matte				Т	T 1	ANALYSIS REQUIRE	:D			
EAL							en	2							1 1			
	Total unless	specified				Insoluable	Ash Residue	Combustable										
Intact	-					olus	R	side										1.4
MP: deg.C						Ins	Ash	Co	5									luo===
	PLE DATA			*CONTAINER I													-	NOTES
SAMPLE ID	BATE ON BATE OFF TYPE & PRESERVATIVE NO																-	
	Dust	31-10-12	29-11-12			х	х	х					+		-	+	_	
CD2c	Dust					X	х	x					+-		-			
CD3	Dust							X					++			-		
CD4	Dust					X	х	х								++	_	
CD5	Dust	N/	- 1/			X	х	X								-	-	
CD6	Dust	V	V			х	х	Х								+		
																1	-	
			_													++		
			-													+	_	
												1 1						
					_													
					_		-											
							-											
	R	ELINQUISHE	D BY:	1														
Davies + Lees	a Kins		DATE:	29.11.12		NAME		,	-0-	0	RECEIV	ED BY		,	1			METHOD OF SHIPMEN
ased Environmental	j		TIME:	1-10		OF:			73					DATE: 2011	12			CONSIGNMENT NOTE
			DATE:	,		NAME		1	0					TIME: (3'CO				
			TIME:	eserved; C = Sodium Hyd		0.5								DATE:				TRANSPORT CO. NAME

AUSTRALIAN LABORATORY SERVICES P/L

Environmental Division

Work Order

CERTIFICATE OF ANALYSIS

Page

Laboratory

Contact

Address

E-mail

Telephone

Facsimile

QC Level

Issue Date

Date Samples Received

No. of samples received

No. of samples analysed

EN1204542 Client

: CARBON BASED ENVIRONMENTAL Contact : MR COLIN DAVIES

Address : 47 BOOMERANG ST

CESSNOCK NSW, AUSTRALIA 2325

E-mail : cbased@bigpond.com

Telephone : +61 49904443 Facsimile : +61 02 49904442

Project : ROCLA CALGA DUSTS

Order number

C-O-C number Sampler : CB

Site

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

: ----

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

Quote number

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 1 of 4

: Peter Keyte

: 61-2-4968-9433

: +61-2-4968 0349

: 29-NOV-2012

: 07-DEC-2012

:6

: 6

: Environmental Division Newcastle

: peter.keyte@als.com.au

: 5 Rosegum Road Warabrook NSW Australia 2304

: NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Newcastle

Signatories Position Accreditation Category

Dianne Blane Laboratory Coordinator (2IC)

Address 5 Rosegum Road Warabrook NSW Australia 2304 +61-2-4968 9433 | Facelmile +61-2-4968 0349 Environmental Division Newcastle 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 4 Work Order : EN1204542

: CARBON BASED ENVIRONMENTAL

Project ROCLA CALGA DUSTS

General Comments

Key:

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

A = This result is computed from individual analyte detections at or above the level of reporting

Analysis as per AS3580.10.1-2003. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in g/m².mth as sampling data was provided by the client.

Page : 3 of 4 Work Order : EN1204542

Client : CARBON BASED ENVIRONMENTAL

Project : ROCLA CALGA DUSTS

ALS

Analytical Results

Sub-Matrix: DUST (Matrix: AIR)	Cli		lient sample ID	CD1 31/10/12 - 29/11/12 [29-NOV-2012]	CD2C 31/10/12 - 29/11/12 [29-NOV-2012]	CD3 31/10/12 - 29/11/12	CD4 31/10/12 - 29/11/12	CD5 31/10/12 - 29/11/12
Compound	CAS Number	LOR	Unit	EN1204542-001		[29-NOV-2012]	[29-NOV-2012]	[29-NOV-2012]
EA120: Ash Content	CAS Number	LON	Onit	LI41204342-001	EN1204542-002	EN1204542-003	EN1204542-004	EN1204542-005
Ash Content		0.1	g/m².month	4.6				
Ash Content (mg)		1	mg		0.8	1.0	0.2	0.2
EA125: Combustible Matter			ilig	79	13	17	4	4
Combustible Matter		0.1	g/m².month	0.3	<0.1			
Combustible Matter (mg)		1	mg	4	VO. 1	0.1	0.3	0.3
EA141: Total Insoluble Matter		- 11	mg	4	1	1	4	4
Total Insoluble Matter		0.1	g/m².month	4.9	0.0			
Total Insoluble Matter (mg)	3			0.8	1.1	0.5	0.5	
, 3,			mg	83	14	18	8	8

Page : 4 of 4 Work Order : EN1204542

Client : CARBON BASED ENVIRONMENTAL

Project : ROCLA CALGA DUSTS

ALS

Analytical Results

Sub-Matrix: DUST (Matrix: AIR)	Cli		lient sample ID	CD6 31/10/12 - 29/11/12 [29-NOV-2012]		 	
Compound	CAS Number	LOR	Unit	EN1204542-006		 	
EA120: Ash Content	CAS Number	LON	Ont	LI41204342-000		 	
Ash Content		0.1	g/m².month	0.4	<u></u>		
Ash Content (mg)		1	mg	7		 	
EA125: Combustible Matter	5: Combustible Matter			The state of the s		 	
Combustible Matter		0.1	g/m².month	0.5			
Combustible Matter (mg)		1	mg	8		 	
EA141: Total Insoluble Matter	A STATE OF THE STA					 	
Total Insoluble Matter		0.1	g/m².month	0.9			
Total Insoluble Matter (mg)	****			15		 ****	

CARBON BASED ENVIRONMENTAL PTY LIMITED

Date:

Todays C	ollection
Time Start:	8.40
Time Finish:	9.00

Client:

Rocla Calga

Project :

SURFACE WATERS

Site	Flow Rate	Odour	Sampling Time	Bottles	Water Turbidity	Water Colour	Comments
	Still	N	9.00	1x 250ml GP, 1x 1L GP, 1x PG	C(S)T	C LO O(B)G	list An
				1x 250ml GP, 1x 1L GP, 1x PG	CST	CLOOBG	light brown
				1x 250ml GP, 1x 1L GP, 1x PG	CST	CLOOBG	NO ACCES
	Still			1x 250ml GP, 1x 1L GP, 1x PG	CST	CLOOB G	DRy
	3411	2	8.40	1x 250ml GP, 1x 1L GP, 1x PG	(C)ST	C)LOOBG	DRY
					CST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOBG	

Turbidity: C=Clear, S= Slight, T=Turbid (CIRCLE)

Colour: C=Clear, LO=Light Orange, O=Orange, B=Brown, G=Green (CIRCLE)

Signed: 2 King

Sampled by: Leesa King , Jill peterson

Carbon Based Environmen						LA	BORA	ATOR	Y BA	ТСН	NO.:									Australian L	aboratory		
ADDRESS: 47 Boomeran	g St CESSNO	CK NSW 232	25									onmental	Ptv I fd							Services Pty	Ltd		
PORT TO: Colin Davies, I	Renae Mikka	SEND INV	OICE TO	: Carbon Based Environme	ental		ONE:						2499044	142	E.	MAII - ob	onod@h:						
EDED BY: 7 working days		REPORT	NEEDED	BY: 7 working days		RE	PORT	FOF	RMAT	: H/	ARD: Ye			DISK:						1@bigpond.com			
ID: Rocla Quarry	QUOTE NO.						LEVI			QCS1			CS2:		QCS3: Ye	ETIN BOA	ARD.	E-MAIL: Yes					
NAL SURV				G/STORAGE OR DIPOSAL	ž.								2002.		NALYSIS			QCS4:	Te				
USE ONLY SEAL	also email r	esults to cha	ased1@l	pigpond.com						1			П		IVAL 1515	REQUIR	T	T	T				
No	Total unless	specified																					
Intact											0												
TEMP: deg.C							5 6	E E	TSS	SGL	0										_		
SAMPL	T	1		*CONTAINER I													++	_	++	NOTE	5		
SAMPLE ID	MATRIX	DATE		TYPE & PRESERVATIVE	NO.													+		++-			
A	Water	29-11-12)	X	()	()		x				++		-			1			
	B Water C Water						×		(-	Enviro	nvironmental Division Sydney						
D	Water			- X	-		$\overline{}$					\dashv				ey —							
F	Water	20 11 2					×	-	()	-	×						Work	Order	er				
	Water	29-11-12)	X	X	()		X							228189					
																ES	12						
																		-					
			_			_	-	-									HIIIIIII		1010	-			
					-	_	+	-		+													
					_	_	-	+	+	+										-			
					_	_	+	+	+	+	\rightarrow				11111								
					-	_	+	+	+	-	+				1 3	Telepho	ne: +6	1-2-878	84 8555				
					-	_	+	+	+	+	+												
						_	+	+	+	+	+					1		1	1 1	1			
	REL	INQUISHED	BY:			_	_																
in Davies 🛉 Lees	a Kine	1		DATE: 29-11-12		NAI	Æ.	5	0			RECEI	ED BY			- 1				METHOD OF S	SHIPMEN		
Based Environmental)		TIME: 1-10		OF:		12	S						DATE	291	112			CONSIGNMEN			
				DATE:		NAI	1E :									E: 17 C	0						
Type and Preservative Co				TIME:		OF.									DATE					TRANSPORT (CO. NAME		

AUSTRALIAN LABORATORY SERVICES P/L

Environmental Division

Work Order

CERTIFICATE OF ANALYSIS

ES1228189 Client : CARBON BASED ENVIRONMENTAL

Contact : MR COLIN DAVIES

Address : 47 BOOMERANG ST

CESSNOCK NSW, AUSTRALIA 2325

E-mail : cbased@bigpond.com

Telephone : +61 49904443 Facsimile : +61 02 49904442 Project : ROCLA QUARRY

Order number

C-O-C number Sampler Site

Quote number : SY-273-11

Page : 1 of 3

Laboratory : Environmental Division Sydney

Contact : Client Services Address

: 277-289 Woodpark Road Smithfield NSW Australia 2164

E-mail

: sydney@alsglobal.com Telephone : +61-2-8784 8555 Facsimile : +61-2-8784 8500

QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Date Samples Received Issue Date

: 29-NOV-2012 : 05-DEC-2012

No. of samples received :2 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11. Signatories

-3	Position	Accreditation Category
Ashesh Patel	Inorganic Chemist	
Dianne Blane		Sydney Inorganics
Sarah Millington	Laboratory Coordinator (2IC)	Newcastle
Sarah Willington	Senior Inorganic Chemist	Sydney Inorganics

Page : 2 of 3

Work Order : ES1228189

Client : CARBON BASED ENVIRONMENTAL

roject : ROCLA QUARRY

General Comments

ey:

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

^ = This result is computed from individual analyte detections at or above the level of reporting

- Sample ES1228189-001 shows poor duplicate results for pH due to the sample matrix. Confirmed by re-analysis. Results were 6.75, 6.66, 6.70, 6.62.
- Sample ES1228189-002 shows poor duplicate results for pH due to the sample matrix. Confirmed re-analysis. Results were 6.49, 6.30, 6.18.

Page Work Order

3 of 3 ES1228189

Client

: CARBON BASED ENVIRONMENTAL

Project

: ROCLA QUARRY

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	А	F		
	Cli	ient sampli	ing date / time	[29-NOV-2012]	700 NOV 00 V		
Compound	CAS Number	LOR	Unit	ES1228189-001	[29-NOV-2012]		 ****
A005: pH	CAS Number	LOR	Unit	E31228189-001	ES1228189-002		 ****
PH Value		0.01	pH Unit	A ==			
A010P: Conductivity by PC Titrator		0.01	prionit	6.75	6.49		
Electrical Conductivity @ 25°C		1	μS/cm	70			
A015: Total Dissolved Solids			рогон	76	65		
otal Dissolved Solids @180°C	GIS-210-010	10	mg/L	62			
A025: Suspended Solids	A STATE		g.2	02	43		
uspended Solids (SS)		5	mg/L	7			
P020: Oil and Grease (O&G)					<5		
il & Grease		5	mg/L	<5	<5		

CARBON BASED ENVIRONMENTAL PTY LIMITED

Today	s Collection
Time Start:	8.10
Time Finish:	12-00

Date: 29-1112

Client:

Rocla Calga

Project:

GROUNDWATERS

Site	DEPTH	Odour	Water	Water		1				
01			Turbidity	Colour	pH	EC	-	2	Bottles	Downloaded
Q1	17.06	Nil	ØS T	CLO O B G	B 72		pH	EC	(Apr/Oct)	Logger? (Y/N)
Q3	10.39	1	© S T	C LO O B G	5-88	81.5us	6.45	77.605	1x 250ml GP, 1x 1L GP, 1RP	Yes
Q4	10.60	7	O S T	C LO O B G		112-200	5.83	109-805	1x 250ml GP, 1x 1L GP, 1RP	yes
Q5	7.67	N	⊘ s⊤	€LOOBG	4.16	88.205	-	86.505	1x 250ml GP, 1x 1L GP, 1RP	yes
Q6	11-35	N	/(C)ST	ØLO O B G	3.62		201	185.4us	1x 250ml GP, 1x 1L GP, 1RP	40
Q7	7.01	N	C ST	(C)LOOBG	3.62			214.74	1x 250ml GP, 1x 1L GP, 1RP	
Q8	6.47	2	Øst	(CLOOB G	3-86		3.90	98-2us	1x 250ml GP, 1x 1L GP, 1RP	NO
Q9	9.34	N	(C)ST	ØLO OBG	3.83		3-82	152.lus	1x 250ml GP, 1x 1L GP, 1RP	yes
Q10	22-01	N	ØST		3.63		3.60	108.9 W	x 250ml GP, 1x 1L GP, 1RP	10
Q11S	10.66	N	(C)ST	©LO O B G	4.68	169-745	4.59	168.3us	x 250ml GP, 1x 1L GP, 1RP	405
Q11D	11-89	N	(C)ST	CLOOBG	3.85	163.945	3-85	163.7us	x 250ml GP, 1x 1L GP, 1RP	Yes
Q12	5.03	N	€)ST	(OLOOBG		154.4W			x 250ml GP, 1x 1L GP, 1RP	
Q13	13.55	N.	C/S T	©LO O B G	3.81	129.745		130-5us	x 250ml GP, 1x 1L GP, 1RP	yes
23	8.97	N	©ST	ØLO O B G	4.26	211.945	4.28	211-8us	x 250ml GP, 1x 1L GP, 1RP	NO
24	18.01	N	CST	CLOOBG	4-11	156.8W	4.13	156-4w1	x 250ml GP, 1x 1L GP, 1RP	700
25	8.51	N	ØST	C)LOOBG	4.45	167.405	4 40		x 250ml GP, 1x 1L GP, 1RP	
P6	11.24	N	ØST	⊘ LO O B G		210.8us	-		250ml GP, 1x 1L GP, 1RP	
27	4.05		ØST	⊘ LO O B G	3-96	202-745	-		250ml GP, 1x 1L GP, 1RP	-
28	, -5	N		(C) LO O B G	4-22	199.5us			250ml GP, 1x 1L GP, 1RP	
N7	16.77	7	CST OST	CLOOBG						
V8	7-82			O LO O B G	4.21	90.70	4.15	113.145	250ml GP, 1x 1L GP, 1RP Or 250ml GP, 1x 1L GP, 1RP	
V9	21.43	2	O ST	O LO O B G	4-36				250ml GP, 1x 1L GP, 1RP	NO
V10	13.30	7	(C)ST	© LO O B G		-4 .			250ml GP, 1x 1L GP, 1RP 250ml GP, 1x 1L GP, 1RP	yes
V13	8.32		O ST	Q LO O B G					250ml GP, 1x 1L GP, 1RP 250ml GP, 1x 1L GP, 1RP	yes
V16		N	©S T	© LO O B G		100.60				yes
	9-02	7	9 ST	⊘ LO O B G	4-48			10 7 5 1x	250ml GP, 1x 1L GP, 1RP 250ml GP, 1x 1L GP, 1RP	

Turbidity: C=Clear, S= Slight, T=Turbid (CIRCLE)

Colour: C=Clear, LO=Light Orange, O=Orange, B=Brown, G=Green (CIRCLE)

pH/EC meter #: 5

Sampled by: Ceesa King Jill peterson

Appendix 2

Additional Bureau of Meteorology Data from Peats Ridge and Gosford Monitoring Stations

Peats Ridge, New South Wales November 2012 Daily Weather Observations

1		Ter	mps		-E/Y 1	127-1	Ma	x wind g	ust			9a	m				- 7.7	31	m		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
-		°C	°C	mm -	mm	hours	,1	km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths	-	km/h	hPa
1	Th			0	6.2				1								1 - 1				
2	Fr			0	6.4																
3	Sa			0.0																	
4	Su			0.6	2.4																
5	Мо			0	4.6					0.00											11
6	Tu			0	5.2					0.00											
7	We			0	6.0																
8	Th																				
9	Fr																				
10	Sa			100-0-																	
11	Su																				
12	Mo																				
13	Tu																				
14	We																				
15	Th																				
16	Fr																				
17	Sa				la all							1 44		1.0				1444			
18		-								_											
20	Mo Tu																				
21	We																				
21	Th																				
22 23	Fr																				
24	Sa																				
25	Su																			1 - 1	
26	Mo	-																			
27	Tu																				
28	We																				
29	Th			2.0	1.6																
	s for No	vember	2012		1.0	_	_		-	1					-	-		-			
	Mean				4.6													1			
	Lowest				1.6																
	Highest			2.0	6.4																
	Total	_	0	2.6	32.4					1					1			*			

Gosford, New South Wales November 2012 Daily Weather Observations

		Tem	nps	27.30	NEW YORK	175.75	Max	wind g	ust			9;	am		0.4			35	m		
Date	Day	Min	Max	Rain	Evap	ap Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLF
2.5		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths	1 1	km/h	hPa	°C	%	eighths	1 1	km/h	hPa
1	Th	11.0	35.5	0			W	37	18:02	24.3	58		E	4		33.6	16		NW	9	
2	Fr	11.0	20.3	0			SE	35	10:24	17.7	51		SE	19		19.3	44		SE	15	
3	Sa	11.9	19.8	1.8			ESE	20	15:41	15.4	99			Calm		18.4	59		SE	11	
4	Su	11.0	24.9	0.2			NE	28	15:30	19.0	95		SE	7		23.7	56		NE	13	
5	Mo	11.8	29.4	0	100		NNE	24	15:26	21.9	86	- 11		Calm		26.4	54	1 (0.1)	E	13	
6	Tu	14.3	30.1	0			NNE	46	13:24	24.7	66		E	6		27.8	50		E	13	
7	We	17.2	29.2	0			NNE	19	14:24	22.2	98		NNE	4		25.9	60		NE	9	
8	Th	15.7	28.6	0			S	31	10:23	24.7	56		NNW	9		25.7	54		ESE	13	
9	Fr	18.2	27.6	13.2			E	26	22:02	23.2	83		N	6		21.8	100		NNE	6	
10	Sa	16.8	19.6	4.6			S	31	16:40	17.4	74		SE	11		17.3	70		SE	13	
11	Su	9.0	21.8	0.4			ESE	35	12:08	19.3	38		E	7		20.4	44		ESE	13	
12	Mo	7.0	24.6	0			NW	31	10:37	19.8	52		N	13		23.4	44		ENE	11	
13	Tu	10.9	21.9	0			ESE	35	12:32	20.4	64		SE	11		20.1	61		SE	17	
14	We	15.3	20.0	0			SE	19	11:24	17.9	98		NNE	2		17.9	99		ENE	6	
15	Th	15.2	26.6	0.4			NE	20	15:36	19.9	98		ESE	2		26.1	55		ENE	6	1
16	Fr	16.8	17.5	3.8			S	26	22:23	100	1		NW	4		P	0.0			Calm	
17	Sa	12.8	20.8	16.4			NE	19	12:00	16.9	86		SE	7		19.2	56		E	7	
18	Su	11.1	24.6	0			SE	39	21:06	20.6	69		ENE	7		23.2	61		E	15	
19	Mo	11.3	20.6	0			SE	39	14:38	18.0	43		SSE	11		18.1	50		SSE	11	
20	Tu	14.3	21.3	13.6			SE	37	03:27	18.7	81		SE	17		19.8	58		SE	13	
21	We	9.1	25.1	0			NE	26	14:58	20.0	75		NNW	11		23.4	66		E	9	
22	Th	15.3	20.6	0			SSE	35	03:49	18.4	83		SE	11		18.7	71		SE	13	ł
23	Fr	14.4	21.7	.0			SSE	20	11:51	19.0	74		SE	7		20.6	61		E	7	
24	Sa	11.5	27.4	0			E	26	16:36	20.8	94		S	4		23.6	76		ENE	9	
25	Su	14.7	34.2	0			SE	22	11:46	27.4	70		SSE	7		30.1	39	100	SE	11	
26	Mo	16.3	27.6	0			S	24	15:52	23.3	11 11		SSE	6		25.9	177		SSE	6	
27	Tu	17.6	26.7	2.2			SE	31	10:25	23.4			SSE	6		23.5	1-0-01		SSE	9	
28	We	16.1	24.2	4.4			NNW	19	20:46				ENE	2		23.0	100		SSW	2	
29	Th	18.0	28.1	2.8			NE	26	16:36	22.3			NE	2		27.8	75		E	9	
.30	Fr	17.6	35.7	0			NNW	26	19:39	27.0			ENE	2		31.6	55		ESE	11	
atistic	s for No	101000000																			
	Mean	13.8	25.2	-12	1	7				20.8	74			6	1	23.3	59			10	
	Lowest	7.0	17.5	1 1						15.4	38			Calm		17.3	16			Calm	-
1	Highest	18.2	35.7	16.4		1	NNE	46		27.4	99		SE	19		33.6	100		SE	17	
	Total			63.8		1															

Observations were drawn from Gosford (Narara Research Station) AWS (station 061087)

The closest station with pressure observations is at Norah Head about 27 km to the northeast. The closest station with cloud and evaporation data is at Peats Ridge about 15 km to the northwest. The closest station with sunshine observations is at Sydney Airport about 59 km to the south.

IDCJDW2048.201211 Prepared at 13:00 UTC on 21 Dec 2012 Copyright © 2012 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf