

Carbon Based Environmental Pty Limited ABN 74 102 920 285

Rocla Quarry Products Calga Quarry

Environmental Monitoring

Dust Deposition Gauges, Surface and Ground Waters and Meteorological Station

March 2011

Colin Davies BSc MEIA CENVP **Environmental Scientist** 18 April 2011

© Carbon Based Environmental Pty Limited 2011. This document was prepared solely for the original recipient and no third party must rely or use any information without the consent of Carbon Based Environmental Pty Limited. Carbon Based Environmental Pty Limited and the author accept no responsibility to any third party who uses or relies upon the information contained in this report.

Executive Summary

Carbon Based Environmental is contracted by Rocla Quarry Products to conduct environmental monitoring at the Calga Sand Quarry.

The monitoring includes;

- Dust Deposition Gauges;
- Surface Waters:
- Groundwaters: and
- Meteorological Station.

This report was prepared by Carbon Based Environmental and includes the following;

- Dust Deposition results for March 2011;
- Surface Water quality results for March 2011;
- Groundwater depth and quality results for March 2011; and
- Meteorological report for March 2011.

The March 2011 dust deposition results were generally lower than February 2011. All sites, on a year to date average basis, are currently below the Air Quality Management Plan exceedence level of $3.7g/m^2$.month. Results were found to be representative of dust levels as determined by the Australian Standard.

Surface water samples were collected for the normal monthly sampling event on the 1 April 2011 at sites A, D and F. Site B was dry and there was no access to site C. At the time of sample collection, there was no water discharge observed from the site. Samples were also collected from sites A, B, C, D, F and Site Inflow on 21 March 2011 during a high rainfall event. Results show generally good quality water with both sites sampled maintaining low Electrical Conductivity, low Total Dissolved Solids, low Total Suspended Solids and no detectable Oil and Grease. pH levels remained stable and were within the slightly acidic range.

Groundwaters were sampled for normal monthly monitoring on 1 April 2011. Groundwater depths increased at the majority of monitoring bores this month, indicating water away from the surface. EC remained relatively steady at all sites. pH remained steady at most sites with the exception of slight decreases at CQ1 and CQ10 and slight increases at CQ8 and CP7.

The meteorological station data recovery for the month was 100% with the exception of wind speed which was unavailable from the 23 March to 31 March due to wind sensor damage. The predominant winds were from the ESE, with strongest winds from the SW-WSW. Recorded rainfall on site for March was 134.4 mm, which was lower than that recorded at the BOM Peats Ridge Station and similar to the Peats Ridge long-term average for March. Results are detailed below:

Rocla Calga Quarry	134.4 mm
BOM Peats Ridge*	177.8 mm
BOM Gosford*	216.6 mm
BOM Peats Ridge Long term mean for March*	138.5 mm

^{*}Data sourced from Bureau of Meteorology (BOM) website (www.bom.gov.au).

Note: Differences in the daily rainfall readings between BOM and the Rocla station may occur due to BOM stations reporting rainfall at 9am and the Rocla station recording rainfall at midnight.

1.0 Sampling Program

Rocla Calga Quarry conducts environmental monitoring in accordance to Development Consent, DEC (EPA) licence and Environmental Management Plans. Carbon Based Environmental are contracted to undertake dust deposition gauge, surface and groundwater and meteorological monitoring for the project. Carbon Based Environmental commenced monitoring from the April 2006 monitoring period.

Dust deposition gauges are operated to the Australian Standard AS3580.10.1 "Methods for Sampling and Analysis of Ambient Air Method 10.1 Determination of Particulates—Deposited Matter—Gravimetric Method". Sampling is undertaken every 30 +/- 2 days and each gauge is analysed for insoluble solids and ash residue. The results are reported as g/m².month.

Surface waters are sampled in accordance with Australian Standards AS5667.1 "Guidance on the Design of Sample Programs, Sampling Techniques and the Preservation and Handling of Samples", AS5667.6 "Water Quality Sampling—Guidance on sampling of rivers and streams" and AS5667.4 "Water Quality Sampling—Guidance on sampling from lakes, natural and man-made". Surface water monitoring sites include local streams and dams. Basic analysis including pH, Electrical Conductivity, Total Suspended Solids, Total Dissolved Solids and Total Oil and Grease is conducted monthly at Sites A and F (dams) and when Sites B, C and D are flowing. Additional samples are collected when daily rainfall exceeds 50mm.

Groundwaters are sampled in accordance with Australian Standards AS5667.1 "Guidance on the Design of Sample Programs, Sampling Techniques and the Preservation and Handling of Samples" and AS5667.11 "Water Quality Sampling—Guidance on sampling of ground waters". Groundwater monitoring sites are sampled at least bi-monthly for water quality and at least quarterly for water level. Groundwater monitoring loggers continuously record water levels in a selection of bores.

Meteorological monitoring is conducted at the quarry and displayed on the site computer with a real time display. Wind parameters are measured according to Australian Standard AS 2923 "Ambient Air— Guide for Measurement of Horizontal Wind for Air Quality Applications".

The weather stations have the following sensor configuration;

- Air temperature
- Humidity
- Rainfall
- Atmospheric pressure
- Evaporation
- Solar radiation
- Wind speed
- Wind direction

Carbon Based Environmental continued to operate the monitoring equipment and utilise site collections at their existing locations.

2.0 Monthly Results

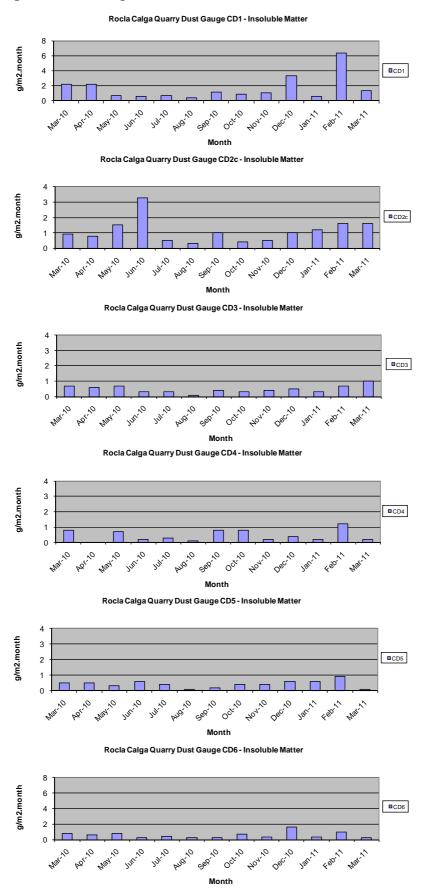
2.1 Dust Deposition Gauges

Table 1 displays the results for March 2011 and the project average. Results are in g/m².month.

Table 1: Dust Deposition results: 1-March 2011 to 1-April 2011

Site	Monthly Insoluble Solids g/m².month	Monthly Ash Residue g/m².month	Monthly Combustible Matter g/m².month	Monthly Ash Residue/ Insoluble Solids %	Rolling Annual Average Insoluble Solids g/m².month
CD1	1.4	0.8	0.6	57	1.6
CD2c	1.6	1.6	< 0.1	100	1.1
CD3	1.0	1.0	< 0.1	100	0.5
CD4	0.2	0.2	< 0.1	100	0.5
CD5	0.1	0.1	< 0.1	100	0.4
CD6	0.2	0.2	< 0.1	100	0.5

Insoluble Solids marked with an * indicate an excessively contaminated gauge. Contamination can include bird droppings, vegetation (such as plant matter, algae, pollen and seeds) and insects. Results in bold indicate insoluble solids levels above 3.7 g/m².month; the Development Consent's annual average amenity criteria at residential locations. The current rolling annual average is calculated from April 2010 to March 2011.


NA= Not Available.

CD1 was installed on the 1 May 2006. CD2a was discontinued at the start of August 2006 due to quarry operations "mining out" the site of the gauge. The replacement gauge, Site CD2b, was located in a position adjacent to the boundary between B. Kashouli and F. & J. Gazzana in conformance with the Air Quality Management Plan. CD4 was installed on 3 October 2006, to gauge air quality impacts to the south of the site operations, as were CD5 and CD6 which were installed on the 14 December 2006. CD2b was discontinued at the end of January 2010 due to contamination of the gauge by non-quarry related vehicle movements on a track adjacent to the gauge. The replacement gauge, CD2c, was located on a rehabilitated section of land between the extraction area and adjacent resident.

Dust deposition charts for all dust gauge sites appear in **Figure 1** below. The laboratory analysis is provided in **Appendix 1**.

The predominant winds were from the ESE, with strongest winds from the SW-WSW.

Figure 1: Dust Deposition Charts

2.2 Water Monitoring

2.2.1 Surface Waters

Monthly surface water monitoring was conducted on the 1 April 2011 and results are listed in **Table 2**. Additional sampling was conducted during a high rainfall event on 21 March 2011. The laboratory analysis sheets for both sampling events are provided in **Appendix 1**.

Table 2: Monthly surface water monitoring – March grab sample results

Site	Observed Flow Rate	Water Colour	Turbidity	pН	EC (μS/cm)	TDS (mg/L)	TSS (mg/L)	Oil and Grease (mg/L)			
A	Dam	Clear	Clear			1		<5			
В	Dry										
C	NO ACCESS										
D	Dam	Clear	Clear	4.98	156	112	6	<5			
F	Dam	Clear	Clear	4.75	90	37	24	<5			

Note: pH, EC, TSS and TDS analysis could not be conducted for site A as the sample bottle was lost by the laboratory during transit.

At the time of sampling, there were no water discharges off site from any sampling location. Samples were collected at sites A, D and F. Site B was dry and there was no access to site C. The samples were collected and analysed for a monthly sampling event. Results show pH within the slightly acidic range, low Electrical Conductivity, low Total Dissolved Solids, low Total Suspended Solids and no detectable Oil and Grease.

2.2.2 Groundwaters

Groundwaters were sampled on 1 April 2011. Water quality tests for pH and electrical conductivity were conducted by Carbon Based Environmental Pty Limited. For water quality purposes, water was purged from the bore until constant pH (+/- 0.1 pH units) and Electrical Conductivity (+/- 5%) was obtained between samples. Data is displayed in **Table 3** and **Figures 2 to 5**.

Groundwater depths increased at the majority of monitoring bores this month, indicating water moving away from the surface. Longer term monitoring is required to fully evaluate groundwater depth trends.

EC remained relatively steady at all sites. pH remained steady at most sites with the exception of slight decreases at CQ1 and CQ10 and slight increases at CQ8 and CP7. Detailed biannual water quality monitoring is next due in April 2011.

Table 3: Groundwater Quality Data

Reference	Bore	Type	Depth to water	Depth to water	pН	Electrical
			TOC (m)	TOC		Conductivity
			April 06	(m)		(µS/cm)
				This report	This report	This report
CQ1	Voutos	* Monitor	20.59	20.50	4.1	130
CQ3	Voutos	* Monitor	10.53	11.39	5.5	120
CQ4	Voutos	* Monitor	8.78	8.66	4.5	100
CQ5	Gazzana	DIP Only	8.69	7.14	4.0	150
CQ6	Gazzana	DIP Only	16.00	14.14	3.9	170
CQ7	Gazzana	* Monitor	6.89	6.74	4.6	100
CQ8	Gazzana	* Monitor	11.03	9.36	4.5	160
CQ9	Gazzana	DIP Only	10.10	9.52	4.4	110
CQ10	Voutos	* Monitor	NI	22.93	4.7	170
CQ11S	Gazzana	* Monitor	NI	10.13	3.9	160
CQ11D	Gazzana	* Monitor	NI	11.36	4.9	140
CQ12	Gazzana	* Monitor	NI	5.85	4.3	130
CQ13	Kashouli	* Monitor	NI	14.17	4.9	200
CP3	Gazzana	Domestic	10.40	8.74	3.8	150
CP4	Kashouli	Domestic	13.63	22.21	4.7	210
CP5	Kashouli	Domestic	16.61	9.04	3.9	250
CP6	Kashouli	Domestic	16.27	11.13	4.2	210
CP7	Kashouli	Production	8.56	3.45	5.3	130
CP8	Rozmanec	Domestic	22.17	NR	NR	NR
MW7	Rocla Bore	* Monitor	15.76	16.40	4.3	120
MW8	Rocla Bore	* Monitor	9.82	8.32	4.8	90
MW9	Rocla Bore	* Monitor	22.44	22.08	3.9	90
MW10	Rocla Bore	* Monitor	15.41	14.85	4.0	130
MW13	Rocla Bore	DIP Only	NI	8.08	4.1	100
MW16	Rocla Bore	DIP Only	NI	8.61	4.6	110

Notes:

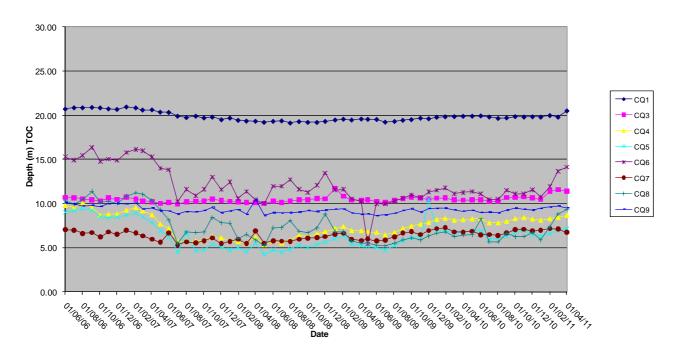
TOC = Water level measured from top of bore case to water.

NM = Not Monitored – unable to sample water due to access restrictions.

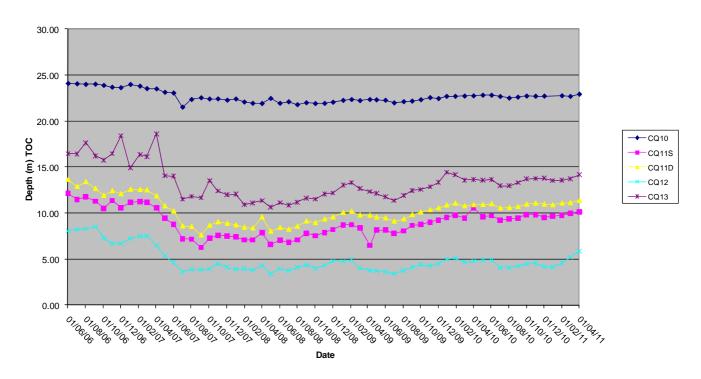
NR = Not Required by resident.

* = Logger Installed.

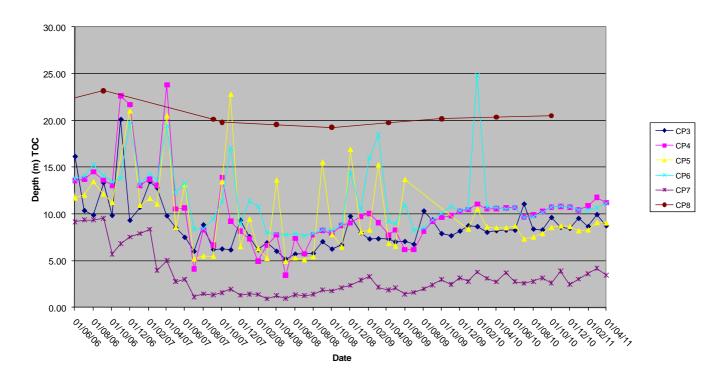
NI = These bores were not installed in April 2006 but are now operational. April 2006 was the first set of measurements taken by Carbon Based Environmental Pty Limited.

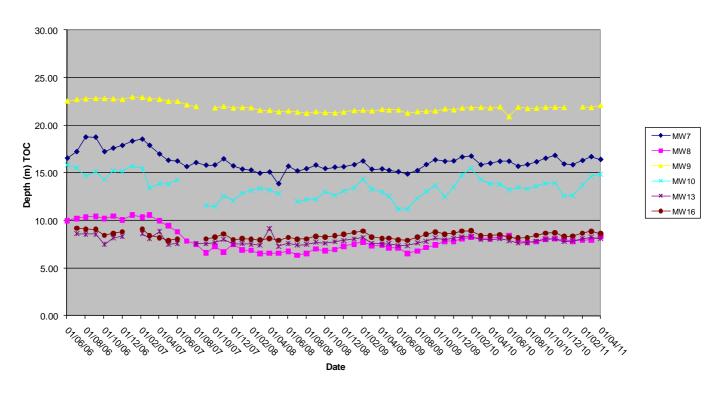

Shading is used to indicate the following trends in water depth (compared to the last reading):

	Increase to ground water depth (water moved away from surface)
	Decrease to ground water depth (water moved towards surface)
	Stable water depth (+/- 0.01m)


Available groundwater loggers were downloaded and will be forwarded to the Rocla Calga Quarry groundwater consultant.

Figures 2 to 5: Groundwater Depth Charts.


Rocla Calga Groundwaters - Quarry Bores CQ1 to CQ9 Water Depth TOC


Rocla Calga Groundwaters - Quarry Bores CQ10 to CQ13 Water depth TOC

Rocla Calga Groundwaters - Quarry Bores CP3 to CP8 Water Depth TOC

Rocla Calga Groundwaters - Quarry Bores MW7 to MW16 Water Depth TOC

2.3 Meteorological Monitoring

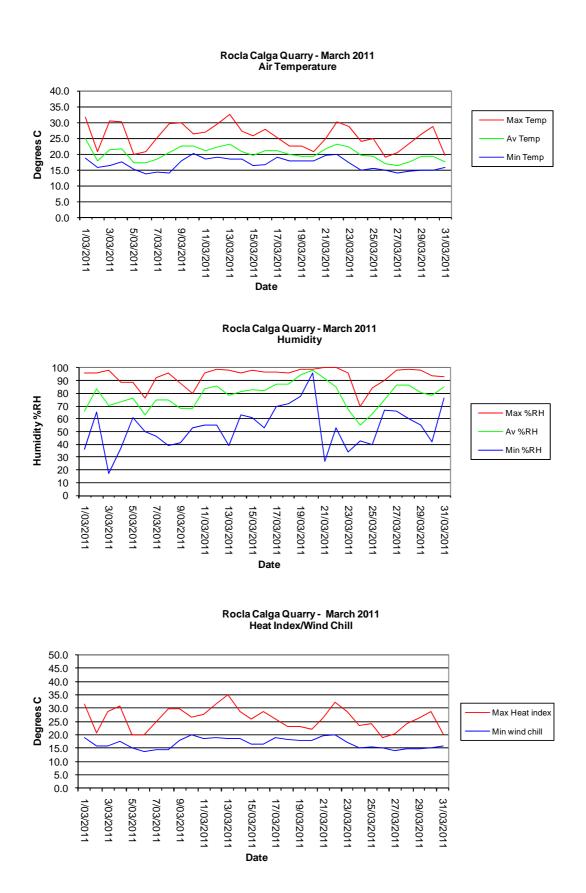
The Rocla Calga Quarry weather station data recovery in March was 100% with the exception of wind speed which was unavailable from the 23 March to 31 March due to a damaged wind sensor. The weather station data follows and includes;

- Monthly data numerical summary;
- Weather charts of air temperature, humidity, heat index and wind chill, atmospheric pressure, solar radiation, evapotranspiration, rain, wind speed and data reception; and
- Wind rose (frequency distribution diagram of wind speed and direction).

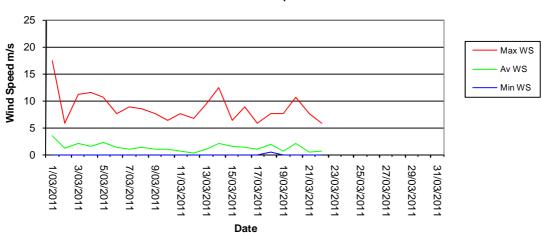
Monthly weather statistics from two nearby Bureau of Meteorology (BOM) stations, Peats Ridge and Gosford are included in **Appendix 2** for comparison purposes.

Data for March 2011 shows rainfall recorded at the Rocla Calga Quarry was lower than that recorded at nearby Peats Ridge and Gosford BOM stations and similar to the Peats Ridge long term mean rainfall for March. The rainfall comparison is provided below:

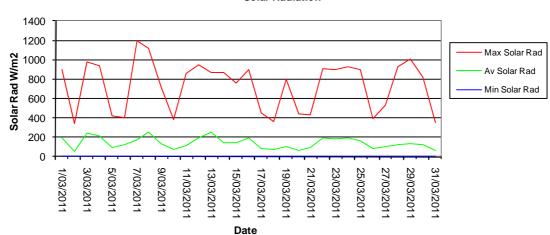
Rocla Calga Quarry	134.4 mm
BOM Peats Ridge*	177.8 mm
BOM Gosford*	216.6 mm
BOM Peats Ridge Long term mean for March*	138.5 mm

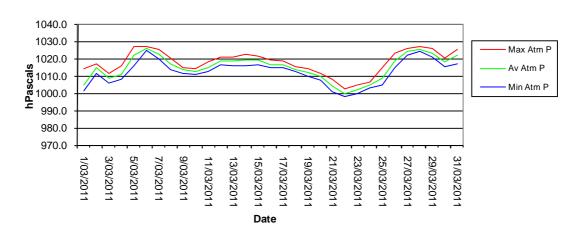

^{*}Data sourced from Bureau of Meteorology (BOM) website (www.bom.gov.au).

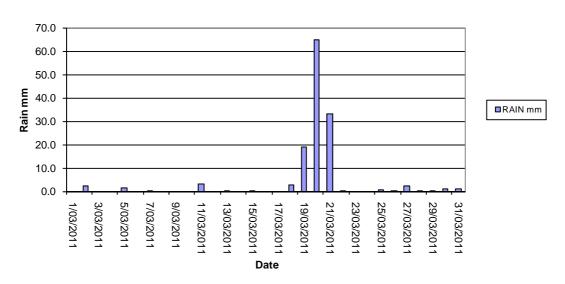
Results are displayed in the following table and figures.

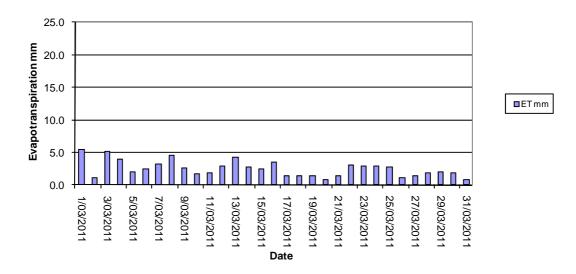

2.3.1 Monthly Meteorological Data Summary

ary	Mar-11		Rocla - Cal	lga																		
te M	in Temp	Av Temp	Max Temp	Min %RH	Av %RH	Max %RH	RAIN mm	ET mm	Min WS	AvWS	Max WS	Min wind chill	Max Heat index	Min Atm P	Av Atm P	Max Atm P	Min Solar Rad	Av Solar Rad	Max Solar Rad	Min Data %	Av data %	Max Data %
2011	18.7	25.1	31.7	36	66	96	0.0	5.4	0	3.5	17.4	18.9	31.6	1001.3	1004.6	1014.2	0	189.2	896	96.2	98.7	100
2011	15.9	17.8	20.8	65	83	96	2.4	1.1	0	1.2	5.8	15.8	20.8	1011.5	1014.5	1016.8	0	54.2	346	100	100.0	100
2011	16.3	21.4	30.6	17	70	98	0.0	5.1	0	2.0	11.2	15.8	28.6	1006.0	1008.7	1011.3	0	245.9	975	99.1	100.0	100
2011	17.5	21.7	30.2	37	74	89	0.0	4.0	0	1.4	11.6	17.5	30.8	1008.0	1010.9	1015.7	0	210.5	943	98.5	100.0	100
2011	15.2	17.2	20.1	61	76	89	1.6	2.1	0	2.3	10.7	15.3	20.1	1015.8	1021.7	1027.0	0	97.2	421	98.8	100.0	100
2011	13.8	17.4	20.9	50	63	76	0.0	2.5	0	1.3	7.6	13.8	20.0	1024.8	1025.8	1027.2	0	121.2	404	98.8	100.0	100
2011	14.5	18.6	25.3	46	75	92	0.4	3.2	0	1.0	8.9	14.6	25.1	1020.0	1022.7	1025.5	0	176.8	1195	98.8	100.0	100
2011	14.2	20.6	29.7	39	75	96	0.0	4.5	0	1.4	8.5	14.3	29.9	1013.8	1016.8	1020.5	0	255.4	1114	98.2	100.0	100
2011	18.0	22.7	29.9	41	69	88	0.0	2.7	0	1.0	7.6	18.0	29.9	1011.5	1013.4	1015.0	0	130.1	724	99.7	100.0	100
2011	20.2	22.6	26.4	53	68	80	0.0	1.7	0	1.0	6.3	20.2	26.8	1010.9	1012.3	1013.9	0	70.7	381	87.4	99.8	100
2011	18.6	21.2	27.1	55	84	96	3.2	1.9	0	0.6	7.6	18.6	27.8	1012.3	1014.8	1017.8	0	113.1	861	94.2	99.9	100
2011	19.0	22.2	29.7	55	86	99	0.0	3.0	0	0.2	6.7	19.0	31.6	1016.6	1018.6	1020.8	0	194.8	951	92.7	99.6	100
2011	18.5	23.2	32.7	39	78	98	0.2	4.3	0	0.9	9.4	18.5	35.2	1015.8	1018.5	1021.0	0	251.5	864	97.1	99.6	100
2011	18.5	20.9	27.4	63	82	96	0.0	2.8	0	2.1	12.5	18.6	28.7	1016.0	1019.3	1022.5	0	146.7	870	96.8	99.7	100
2011	16.4	19.6	25.7	61	83	98	0.4	2.5	0	1.5	6.3	16.4	26.1	1016.4	1019.0	1021.4	0	139.8	764	95.3	99.8	100
2011	16.6	21.0	27.9	53	82	97	0.0	3.5	0	1.4	8.9	16.7	28.6	1015.0	1016.4	1019.0	0	197.5	894	98.8	100.0	100
2011	19.1	21.1	25.1	70	87	97	0.0	1.5	0	0.9	5.8	19.1	26.1	1014.8	1016.6	1018.7	0	83.7	448	100	100.0	100
2011	18.0	19.8	22.7	72	87	96	2.8	1.5	0.4	2.0	7.6	18.2	23.2	1012.6	1013.8	1015.1	0	76.9	359	99.7	100.0	100
2011	17.8	19.5	22.6	78	94	99	19.0	1.5	0	0.6	7.6	17.8	23.2	1009.8	1012.0	1014.1	0	99.4	800	88.3	99.6	100
2011	18.0	19.2	20.7	96	98	99	65.0	0.8	0	2.0	10.7	18.0	22.1	1007.6	1009.6	1011.3	5	60.7	441	81	96.7	100
_	19.7	21.6	24.9	27	92	100	33.0	1.5	0	0.5	7.6	19.7	26.5	1000.8	1004.0	1007.9	5	95.3	428	74.6	97.4	100
	20.0	23.2	30.2	53	85	100	0.2	3.1	0	0.5	5.8	20.0	32.4	998.0	999.9	1002.4	5	198.2	904	91.5	99.2	100
	17.3	22.4	28.9	34	67	96	0.0	3.0				17.4	28.9	999.8	1002.0	1004.8	0	182.7	897	94.4	99.5	100
	15.0	19.6	24.0	43	55	70	0.0	2.9				15.0	23.6	1003.1	1004.7	1006.4	0	192.5	933	96.2	99.5	100
	15.4	19.3	24.9	40	64	84	0.6	2.8				15.4	24.3	1004.5	1008.5	1014.7	0	168.0	895	96.8	99.9	100
	14.9	17.0	19.1	67	75	90	0.2	1.2				15.0	19.1	1014.7	1018.8	1022.8	0	79.9	393	92.7	99.8	100
	14.1	16.5	20.4	66	87	98	2.4	1.5				14.1	20.5	1021.8	1024.1	1025.9	0	104.5	529	92.7	99.9	100
2011	14.7	17.7	23.6	60	86	99	0.4	1.8				14.7	24.1	1024.1	1025.5	1027.1	0	124.2	932	95.3	99.9	100
_	14.9	19.4	26.3	55	81	98	0.2	2.1				14.9	26.5	1020.6	1023.1	1025.6	0	130.1	1005	92.1	99.3	100
2011	15.0	19.3	28.9	42	78	94	1.2	1.9				15.1	28.9	1015.5	1017.9	1020.4	0	119.4	822	94.7	99.8	100
2011	15.7	17.7	19.7	76	85	93	1.2	0.9				15.7	20.3	1016.9	1022.0	1025.2	0	63.1	354	94.2	99.6	100
thly	13.8	20.2	32.7	17	79	100	134.4	78.0	0	1.3	17.4	13.8	35.2	998	1014.9	1027.2	0	141.1	1195	74.6	99.6	100
2011 thly	15.7	17.7	19.	7	7 76	7 76 85	7 76 85 93	7 76 85 93 1.2	7 76 85 93 1.2 0.9	7 76 85 93 1.2 0.9	7 76 85 93 1.2 0.9	7 76 85 93 1.2 0.9	7 76 85 93 1.2 0.9 15.7	7 76 85 93 1.2 0.9 15.7 20.3	7 76 85 93 1.2 0.9 15.7 20.3 1016.9	7 76 85 93 1.2 0.9 15.7 20.3 1016.9 1022.0	7 76 85 93 1.2 0.9 15.7 20.3 1016.9 1022.0 1025.2	7 76 85 93 1.2 0.9 15.7 20.3 1016.9 1022.0 1025.2 0	7 76 85 93 1.2 0.9 15.7 20.3 1016.9 1022.0 1025.2 0 63.1	7 76 85 93 1.2 0.9 15.7 20.3 1016.9 1022.0 1025.2 0 63.1 354	7 76 85 93 1.2 0.9 15.7 20.3 1016.9 1022.0 1025.2 0 63.1 354 94.2	7 76 85 93 1.2 0.9 15.7 20.3 1016.9 1022.0 1025.2 0 63.1 354 94.2 99.6

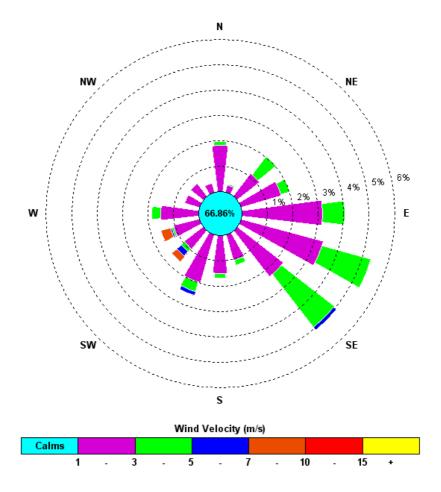

2.3.2 Monthly Weather Charts




Rocla Calga Quarry - March 2011 Solar Radiation


Rocla Calga Quarry - March 2011 Atmospheric Pressure

Rocla Calga Quarry - March 2011 Rainfall


Rocla Calga Quarry - March 2011 Evapotranspiration

2.3.3 Monthly Windrose Plot

Frequency plot of the average wind speed and average direction over each 15 minute sampling period. Wind is considered to be calm when less than a 15 minute average of 1m/s.

00:15, 1 March 2011 - 20:15, 22 March 2011

The predominant winds were from the ESE, with strongest winds from the SW-WSW. The maximum wind speed was 17.4m/s from the WSW.

Appendix 1 Laboratory Certificates

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EN1100742** Page : 1 of 4

Client : CARBON BASED ENVIRONMENTAL Laboratory : Environmental Division Newcastle

Contact : MS RENAE MIKKA Contact : Peter Keyte

Address : 47 BOOMERANG ST Address : 5 Rosegum Road Warabrook NSW Australia 2304

CESSNOCK NSW, AUSTRALIA 2325

 E-mail
 : cbased1@bigpond.com
 E-mail
 : peter.keyte@als.com.au

 Telephone
 : +61 49904443
 Telephone
 : 61-2-4968-9433

 Facsimile
 : +61 02 49904442
 Facsimile
 : +61-2-4968 0349

Project : ROCLA CALGA DUSTS QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 01-APR-2011

 Sampler
 : -- Issue Date
 : 08-APR-2011

Site : ---

No. of samples received : 6

Quote number : SY/269/10 V2 No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Peter Keyte Newcastle Manager Newcastle

Environmental Division Newcastle

Part of the ALS Laboratory Group

5 Rosegum Road Warabrook NSW Australia 2304

Tel. +61-2-4968 9433 Fax. +61-2-4968 0349 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 4
Work Order : EN1100742

Client : CARBON BASED ENVIRONMENTAL

Project : ROCLA CALGA DUSTS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Analysis as per AS3580.10.1-2003. Samples passed through a 1mm sieve prior to analysis. NATA accreditation is not held for results reported in g/m².mth. Period sampled: 1/03/11 - 1/04/11.

Page : 3 of 4
Work Order : EN1100742

Client : CARBON BASED ENVIRONMENTAL

Project : ROCLA CALGA DUSTS

ALS

Analytical Results

Sub-Matrix: DUST	T Client sample ID			CD1	CD2C	CD3	CD4	CD5
	C	lient sampli	ing date / time	[01-APR-2011]	[01-APR-2011]	[01-APR-2011]	[01-APR-2011]	[01-APR-2011]
Compound	CAS Number	LOR	Unit	EN1100742-001	EN1100742-002	EN1100742-003	EN1100742-004	EN1100742-005
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.8	1.6	1.0	0.2	0.1
Ash Content (mg)		1	mg	14	29	19	4	2
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.6	<0.1	<0.1	<0.1	<0.1
Combustible Matter (mg)		1	mg	11	<1	<1	<1	<1
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	1.4	1.6	1.0	0.2	0.1
Total Insoluble Matter (mg)		1	mg	25	29	19	4	2

Page : 4 of 4 Work Order : EN1100742

Client : CARBON BASED ENVIRONMENTAL

Project : ROCLA CALGA DUSTS

Analytical Results

Sub-Matrix: DUST	Client sample ID				 	
	C	lient sampli	ing date / time	[01-APR-2011]	 	
Compound	CAS Number	LOR	Unit	EN1100742-006	 	
EA120: Ash Content						
Ash Content		0.1	g/m².month	0.2	 	
Ash Content (mg)		1	mg	3	 	
EA125: Combustible Matter						
Combustible Matter		0.1	g/m².month	<0.1	 	
Combustible Matter (mg)		1	mg	<1	 	
EA141: Total Insoluble Matter						
Total Insoluble Matter		0.1	g/m².month	0.2	 	
Total Insoluble Matter (mg)		1	mg	3	 	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES1106871** Page : 1 of 3

Client : CARBON BASED ENVIRONMENTAL Laboratory : Environmental Division Sydney

Contact : MS RENAE MIKKA Contact : Client Services

Address : 47 BOOMERANG ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

CESSNOCK NSW, AUSTRALIA 2325

 Facsimile
 : +61 02 49904442
 Facsimile
 : +61-2-8784 8500

 Project
 : ROCLA QUARRY
 QC Level
 : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 01-APR-2011

 Sampler
 : CBE
 Issue Date
 : 07-APR-2011

Site · ---

No. of samples received : 3

Quote number : SY/269/10 V2 No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics

 Peter Keyte
 Newcastle Manager
 Newcastle

 Sarah Millington
 Senior Inorganic Chemist
 Sydney Inorganics

Page : 2 of 3
Work Order : ES1106871

Client : CARBON BASED ENVIRONMENTAL

Project : ROCLA QUARRY

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 3 Work Order : ES1106871

Client : CARBON BASED ENVIRONMENTAL

Project : ROCLA QUARRY

Analytical Results

Sub-Matrix: WATER	Client sample ID			D	F	Α	
	Cli	ent sampli	ng date / time	[01-APR-2011]	[01-APR-2011]	[01-APR-2011]	
Compound	CAS Number	LOR	Unit	ES1106871-001	ES1106871-002	ES1106871-003	
EA005: pH							
pH Value		0.01	pH Unit	4.98	4.75		
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	156	90		
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	112			
Total Dissolved Solids @180°C	GIS-210-010	1	mg/L		37		
EA025: Suspended Solids							
^ Suspended Solids (SS)		5	mg/L	6	24		
EP020: Oil and Grease (O&G)							
Oil & Grease		5	mg/L	<5	<5	<5	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES1106128** Page : 1 of 4

Client : CARBON BASED ENVIRONMENTAL Laboratory : Environmental Division Sydney

Contact : MR COLIN DAVIES Contact : Client Services

Address : 47 BOOMERANG ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

CESSNOCK NSW, AUSTRALIA 2325

 E-mail
 : cbased@bigpond.com
 E-mail
 : sydney@alsglobal.com

 Telephone
 : +61 49904443
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 49904442
 Facsimile
 : +61-2-8784 8500

Project : ROCLA QUARRY RAIN EVENT QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 24-MAR-2011

 Sampler
 : -- Issue Date
 : 31-MAR-2011

Site : ---

No. of samples received : 6

Quote number : SY/269/10 V2 No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics
Hoa Nguyen	Inorganic Chemist	Sydney Inorganics

Page : 2 of 4
Work Order : ES1106128

Client : CARBON BASED ENVIRONMENTAL
Project : ROCLA QUARRY RAIN EVENT

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- EP020 Oil and Grease, LOR raised due to insufficient volume.
- TDS by method EA-015 may bias high for various samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.

Page : 3 of 4
Work Order : ES1106128

Client : CARBON BASED ENVIRONMENTAL
Project : ROCLA QUARRY RAIN EVENT

Analytical Results

Sub-Matrix: WATER	Client sample ID			Α	В	С	D	F
	Cl	ent sampli	ng date / time	21-MAR-2011 15:00				
Compound	CAS Number	LOR	Unit	ES1106128-001	ES1106128-002	ES1106128-003	ES1106128-004	ES1106128-005
EA005: pH								
pH Value		0.01	pH Unit	3.20	2.56	5.64	4.82	2.68
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	307	972	87	141	853
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L			79	88	
Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	138	406			354
EA025: Suspended Solids								
^ Suspended Solids (SS)		5	mg/L	11	51	21	23	70
EP020: Oil and Grease (O&G)								
Oil & Grease		5	mg/L	<20	<5	<5		

Page : 4 of 4 Work Order : ES1106128

Client : CARBON BASED ENVIRONMENTAL
Project : ROCLA QUARRY RAIN EVENT

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	INFLOW	 	
	CI	ient sampli	ng date / time	21-MAR-2011 15:00	 	
Compound	CAS Number	LOR	Unit	ES1106128-006	 	
EA005: pH						
pH Value		0.01	pH Unit	5.64	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	μS/cm	50	 	
EA015: Total Dissolved Solids						
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	51	 	
EA025: Suspended Solids						
^ Suspended Solids (SS)		5	mg/L	182	 	
EP020: Oil and Grease (O&G)						
Oil & Grease		5	mg/L	<5	 	

Appendix 2

Additional Bureau of Meteorology Data from Peats Ridge and Gosford Monitoring Stations

Peats Ridge, New South Wales March 2011 Daily Weather Observations

		Ton	emps D. D. Max wind gust 9am									3pm									
Date	Day	Min	Max	Rain	in Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
Dutt		*C	*C	mm	mm	hours	Dilli	km/h	local	'C	%	eighths	Dilli	km/h	hPa	10	%	eighths	Dilli	km/h	hPa
1	Tu	21.2	32.0	11.4	3.8					26.2	60	4	NW	9		30.7	42	3	SW	4	
2	We	16.2	19.7	0						17.6	76	8	SE	4		19.5	74	8	E	4	
3	Th	15.9	30.0	1.0	1.0					17.2	96	8	WNW	4		29.1	23	5	SW	9	
4	Fr	16.2	28.8	0	4.4					20.6	79	7	ESE	4		27.7	38	3	SW	4	
5	Sa	14.9	20.8	4.0	4.4					15.6	91	7	s	4		17.2	84	8	ESE	9	
6	Su	11.2	20.6	1.4	2.6					18.1	62	3	SE	4		20.2	58	8	SE	9	
7	Мо	13.9	23.4	2.2	2.2					16.1	97	8	ESE	4							
8	Tu	13.2	27.8	0	2.0					21.8	69	0		Calm		26.5	54	0	NW	4	
9	We	16.8	28.6	0.4	5.7					19.4	88	8	NW	4		26.7	52	8	W	4	
10	Th	17.8	25.2	0	2.8					21.1	82	8	NE	4		24.9	69	8	NW	4	
11	Fr	16.9	26.0	0.2	1.0					21.1	82	7	NW	4		24.3	75	8	ESE	9	
12	Sa	18.0	29.0	0.8	2.4					19.7	97	8	E	4		28.8	85	6	E	9	
13	Su	17.0	30.6	0						21.9	87	0	E	4		29.2	60	2	NE	4	
14	Mo	18.2	28.2	0	5.4					21.5	88	1	NW	4		23.1	82	8	S	9	
15	Tu	15.7	25.7	0	5.6					17.2	93	8	E	4		19.8	79	8	E	4	
16	We	15.0	28.1	0						22.4	77	2	W	4		26.0	62	3	SE	9	
17	Th	18.2	23.7	4.2						19.6	98	8	S	4		22.2	82	8	E	4	
18	Fr	17.9	21.7	0.4						18.8	91	8	S	4		21.2	82	7	SSE	4	
19	Sa	17.2	22.7	5.2						18.3	98	8	SW	4		21.5	84	6	NE	4	
20	Su	17.3	21.2	72.6						18.7	95	8	S	4		20.0	96	8	S	9	
21	Мо	18.0	25.0	63.0						20.7	98	8	Е	4		22.8	90	8		4	
22	Tu		30.2	3.2												24.5	83	3	E	4	
23	We	17.1	29.3	0						20.0	81	1	W	4		27.5	48	5	W	4	
24	Th	13.1	24.8	0						18.2	62	2	NW	9		24.1	47	3		9	
25	Fr	14.8	25.0	0						18.2	70	1	NW	4		23.4	48	7	S	4	
26	Sa	15.2	20.1	1.0						16.2	76	8	SW	9		19.6	67	7	S	9	
27	Su	13.7	20.3	1.4						14.2	97	8	SW	4		19.2	79	5	S	4	
28	Мо	12.8	21.6	3.2						16.4	98	3	S	4		19.6	83	5		4	
29	Tu	13.8	24.5	0.4						16.7	93	8	E	4		23.5	62	4	E	4	
30	We	14.1	28.1	0						18.7	90	1	NW	4		23.2	54	5	SW	9	
31	Th	16.7	20.1	1.8	3.6					18.3	94	8	S	4		19.1	81	6	SE	4	\Box
Statistic	s for Ma	rch 2011 15.9			2 5					19.0	0.51	5		4		22.5	27			=	$\overline{}$
<u> </u>	Mean		25.3		3.5						85	_		C-I		23.5	67	5		5	\vdash
	Lowest	11.2 21.2	19.7 32.0	72.6	0.8 6.0					14.2 26.2	60 98	0	#	Calm		17.2 30.7	23 96	0	#	9	\vdash
	Highest Total	21.2	32.0	177.8	97.9					20.2	98	8	#	9		30.7	90	8	#	8	\vdash
	rotal			177.8	8.18																

Gosford, New South Wales March 2011 Daily Weather Observations

	Dalical of Metcotol																						
	_		nps	Rain	Evap	Sun		wind g	ust	9am							3pm						
Date	Day	Min	Max		Lvap		Dirn	Spd	Time	Temp	RH	Cld	Dim	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP		
		°C	*C	mm	mm	hours		km/h	local	*C	%	eighths		km/h	hPa	*C	%	eighths	140.044	km/h	hPa		
1 1	Tu	21.0	34.7	1.4			N	43	10:29	29.0	48		NNW	· · ·		32.6	35		WNW	11			
2	We	18.6	21.4	0			S	22	23:26	19.8	66			Calm		21.3	65		SE	2			
3	Th	15.4	31.6	0.2			NNW	28	14:13	20.2	91		NNW	. 7		30.9	18		W	13			
4	Fr	17.0	27.6	0			SSE	30	19:29	21.5	87			Calm		27.1	59		SE	9			
5	Sa	16.5	21.4	5.6			SSE	30	13:47	19.2	66		SSE	9		17.9	80		SSE	9			
0	Su	12.3	22.7	0.6			SE SE	52	09:42	17.7	74		NNW	4		21.7	45 52		SE	11 7			
/	Мо	14.0	24.6	0.2				24	14:22	17.9	98		ININVV	4		24.0			ENE				
8	Tu	11.9	27.9	0.4			E	26	15:19	19.1	92			Calm		25.2	57		NE	11			
9	We	16.9	29.7	0			N	20	12:47	19.6	98			Calm		28.5	41		NW	. 7			
10	Th	18.8	27.3	0			N	13	14:53	20.4	98			Calm		26.7	69			Calm			
11	Fr	17.9	27.5	0			S	22	13:31	21.8	88			Calm		23.5	94		SE	9			
12	Sa	18.3	29.5	0.4			ESE	22	14:52	21.9	98		WNW	7		27.6	64		SE	11			
13	Su	16.4	30.7	0			NE	28	15:35	21.8	98		NNE	2		28.9	57		NE	11	$\overline{}$		
14	Мо	17.6	29.2	0			S	41	12:42	23.3	86		_	Calm		21.6	98		SSE	15			
15	Tu	17.7	26.4	0.2			SSE	24	13:35	21.4	82		S	- 4		24.5	66		SE	13			
16	We	15.0	28.9	0			SE	28	13:48	21.3	93			Calm		26.2	62		SE	15			
17	Th	18.9	24.6	0			SE	22	16:00	22.3	94		SSE	4		24.1	76		SSE	9			
18	Fr	19.9	24.0	0			S	26	11:52	21.1	87		S	7		23.1	76		SSE	13			
19	Sa	18.6	23.5	13.6			SSE	26	12:15	20.6	100		SE	4		22.7	95		SE	11			
20	Su	18.6	22.1	94.4			SE	37	11:19	19.4	100		SSE	4		20.6	99		SSE	9			
21	Мо	19.0	26.2	74.0			SE	28	00:04	21.6	99		N	7		24.9	81		E	/			
22	Tu	18.9	29.9	1.8			SE	19	15:45	23.2	98			Calm		29.8	62		ESE	6			
23	We	16.7	30.7	0			N	30	12:37	22.8	74		N	6		30.2	36		WNW	11			
24	Th	11.9	26.2	0			N	39	10:45	20.4	52		N	11		26.0	39		NNW	15	i 1		
25	Fr	12.9	26.8	0			NNW	24	10:29	19.9	62		N	11		25.1	38		SSE	. 7			
26	Sa	16.7	20.9	0.2			SSW	33	15:15	16.7	84		Е	7		20.3	67		SSE	15			
27	Su	15.5	22.3	3.4			ESE	24	15:48	15.9	99		NNE	4		21.8	64		SSE	9			
28	Мо	13.5	23.5	2.8			ESE	20	13:13	17.1	98			Calm		22.6	73		E	7			
29	Tu	14.6	25.8	1.8			SSE	26	13:38	18.1	100		N	4		24.9	59		ESE	13			
30	We	13.7	29.8	0			WSW	31	14:43	18.5	98			Calm		28.0	51		E	6			
31	Th	15.5	21.4	15.6			SSW	26	06:54	19.0	99		W	2		19.2	87		S	13			
Statistic										00.1	0.71					04.0	201						
	Mean	16.5	26.4							20.4	87			3		24.9	63			. 9	\square		
	Lowest	11.9	20.9					-		15.9	48			Calm		17.9	18		_	Calm			
	Highest	21.0	34.7	94.4			SE	52		29.0	100		N	11		32.6	99		#	15	\square		
	Total			216.6																			