Carbon Based Environmental Pty Limited
 ABN 74102920285

Rocla Quarry Products Calga Quarry

Environmental Monitoring

Dust Deposition Gauges, Surface and Ground
 Waters and Meteorological Station

January 2014

Colin Davies BSc MEIA CENVP
Environmental Scientist
Date: 03 March 2014

Executive Summary

Carbon Based Environmental is contracted by Rocla Quarry Products to conduct environmental monitoring at the Calga Sand Quarry.

The monitoring includes;

- Dust Deposition Gauges;
- Surface Waters;
- Groundwaters; and
- Meteorological Station.

This report was prepared by Carbon Based Environmental and includes the following;

- Dust Deposition results for January 2014;
- Surface Water quality results for January 2014;
- Groundwater depth and quality results for January 2014; and
- Meteorological report for January 2014.

The January 2014 dust deposition results for insoluble solids were generally low and free of major contamination this month. All sites, on a rolling annual average basis, are currently below the Air Quality Management Plan exceedance level of $3.7 \mathrm{~g} / \mathrm{m}^{2}$. month. Results were found to be representative of dust levels as determined by the Australian Standard.

Surface water samples were collected on 3 February 2014 at sites A and F. Site C was inaccessible and unable to be sampled this month. Site B and Site D were dry at the time of sampling this month. The samples were collected and analysed for a monthly sampling event. Results show pH within the slightly acidic to neutral range, low Electrical Conductivity, low Total Dissolved Solids and low Total Suspended Solids. Oil and Grease was not detected at any site.

Groundwaters were sampled for normal monthly monitoring on 3 February 2014. Groundwater depth generally increased across the sampled groundwater bores when compared to last month. Groundwater pH and EC were generally stable this month with the exception of CQ10 which showed a decrease in pH .

The meteorological station data recovery for the month was approximately 100%. Recorded rainfall on site for January was 29.6 mm , which was lower than the Peats Ridge long-term average for January. A comparison is shown below:

Rocla Calga Quarry
29.6 mm

BOM Peats Ridge*
BOM Gosford*
BOM Peats Ridge Long term mean for January*

> NA = Not Available

[^0]
Sampling Program

Rocla Calga Quarry conducts environmental monitoring in accordance to Development Consent, OEH (EPA) licence and Environmental Management Plans. Carbon Based Environmental are contracted to undertake dust deposition gauge, surface and groundwater and meteorological monitoring for the project. Carbon Based Environmental commenced monitoring from the April 2006 monitoring period.

Dust deposition gauges are operated to the Australian Standard AS3580.10.1 "Methods for Sampling and Analysis of Ambient Air Method 10.1 Determination of Particulates-Deposited Matter-Gravimetric Method". Sampling is undertaken every $30+/-2$ days and each gauge is analysed for insoluble solids and ash residue. The results are reported as $\mathrm{g} / \mathrm{m}^{2}$. month.

Surface waters are sampled in accordance with Australian Standards AS5667.1 "Guidance on the Design of Sample Programs, Sampling Techniques and the Preservation and Handling of Samples", AS5667.6 "Water Quality SamplingGuidance on sampling of rivers and streams" and AS5667.4 "Water Quality Sampling-Guidance on sampling from lakes, natural and man-made". Surface water monitoring sites include local streams and dams. Basic analysis including pH , Electrical Conductivity, Total Suspended Solids, Total Dissolved Solids and Total Oil and Grease is conducted monthly at Sites A and F (dams) and when Sites B, C and D are flowing. Additional samples are collected when daily rainfall exceeds 50 mm .

Groundwaters are sampled in accordance with Australian Standards AS5667.1 "Guidance on the Design of Sample Programs, Sampling Techniques and the Preservation and Handling of Samples" and AS5667.11 "Water Quality SamplingGuidance on sampling of ground waters". Groundwater monitoring sites are sampled at least bi-monthly for water quality and at least quarterly for water level. Groundwater monitoring loggers continuously record water levels in a selection of bores.

Meteorological monitoring is conducted at the quarry and displayed on the site computer with a real time display. Wind parameters are measured according to Australian Standard AS 2923 "Ambient Air— Guide for Measurement of Horizontal Wind for Air Quality Applications".

The weather stations have the following sensor configuration;
Air temperature

- Humidity
- Rainfall
- Atmospheric pressure
- Evaporation
- Solar radiation
- Wind speed
- Wind direction

Carbon Based Environmental continued to operate the monitoring equipment and utilise site collections at their existing locations.

The locations of monitoring points are provided in Figure 1.

REFERENCE Groundwater Monitoring Locations

Quarry Site Boundary
∇ cD1 Air Quality Monitoring Location
A Surface Water Monitoring Location

SCALE 1:10 000

- MW Groundwater Bore - Converted Exploration Drillhole
- CQ Groundwater Bore-Piezometer Constructed and
- CP

Maintained Solely for Monitoring Purposes
Groundwater Bore - Privately Owned Bore
Automatic Water Logger
\# Now Removed
(NM) Not Currently Monitored
MONITORING LOCATIONS
Figure 1: Rocla Calga Quarry environmental monitoring locations

2.0 Monthly Results

2.1 Dust Deposition Gauges

Table 1 displays the results for January 2014 and the project 12 month rolling average. Results are in $\mathrm{g} / \mathrm{m}^{2}$. month.

Table 1: Dust Deposition results: 3 January 2014 - 3 February 2014 (31 days)

Site	Monthly Insoluble Solids $\mathbf{g} / \mathbf{m}^{2} \cdot \mathbf{m o n t h}$	Monthly Ash Residue $\mathbf{g} / \mathbf{m}^{2} \cdot$ month	Monthly Combustible Matter $\mathbf{g} / \mathbf{m}^{2} \cdot \mathbf{m o n t h}$	Monthly Ash Residue/ Insoluble Solids $\%$	Rolling Annual Average Insoluble Solids $\mathbf{g} / \mathbf{m}^{2}$. month
CD1	1.6	0.9	0.7	56	1.4
CD2c	0.6	0.3	0.3	50	1.1
CD3	0.8	0.5	0.3	63	2.1
CD4	0.7	0.3	0.4	43	0.6
CD5	0.3	0.1	0.2	33	0.4
CD6	0.7	0.3	0.4	43	0.6

Insoluble Solids marked with an * indicate an excessively contaminated gauge. Contamination can include bird droppings, vegetation (such as plant matter, algae, pollen and seeds) and insects. Results in bold indicate insoluble solids levels above $3.7 \mathrm{~g} / \mathrm{m}^{2}$.month; the Development Consent's annual average amenity criteria at residential locations. The current rolling annual average is calculated from February 2013 to January 2014.

NA $=$ Not Available.
CD1 was installed on the 1 May 2006. CD2a was discontinued at the start of August 2006 due to quarry operations "mining out" the site of the gauge. The replacement gauge, Site CD2b, was located in a position adjacent to the boundary between B. Kashouli and F. \& J. Gazzana in conformance with the Air Quality Management Plan. CD4 was installed on 3 October 2006, to gauge air quality impacts to the south of the site operations, as were CD5 and CD6 which were installed on the 14 December 2006. CD2b was discontinued at the end of January 2010 due to contamination of the gauge by non-quarry related vehicle movements on a track adjacent to the gauge. The replacement gauge, CD2c, was located on a rehabilitated section of land between the extraction area and adjacent resident.

Dust deposition charts for all dust gauge sites appear in Figure 2 below. The laboratory analysis is provided in Appendix 1.

Figure 2: Dust Deposition Charts

Rocla Calga Quarry Dust Gauge CD3 - Insoluble Matter

Rocla Calga Quarry Dust Gauge CD5 - Insoluble Matter

2.2 Surface Water Monitoring

Monthly surface water monitoring was conducted on the 3 February 2014 and results are listed in Table 2. The laboratory analysis sheets are provided in Appendix 1.

Table 2: Monthly surface water monitoring - January grab sample results

Site	Observed Flow Rate	Water Colour	Turbidity	pH	$\underset{(\mu \mathrm{S} / \mathrm{cm})}{\mathrm{EC}}$	$\begin{aligned} & \text { TDS } \\ & \text { (mg/L) } \end{aligned}$	$\begin{aligned} & \text { TSS } \\ & \text { (mg/L) } \end{aligned}$	Oil and Grease (mg / L)
A	Dam	Clear	Slight	6.57	86	61	9	<5
B	Dry							
C	No access							
D	Dry							
F	Dam	Clear	Clear	6.32	92	73	<5	<5

Samples were collected at sites A and F. Site C was inaccessible and unable to be sampled this month. Site B and Site D were dry at the time of sampling this month. The samples were collected and analysed for a monthly sampling event. Results show pH within the slightly acidic to neutral range, low Electrical Conductivity, low Total Dissolved Solids and low Total Suspended Solids. Oil and Grease was not detected at any site.

2.3 Groundwater Monitoring

Groundwaters were sampled on 3 February 2014. Water quality tests for pH and electrical conductivity were conducted by Carbon Based Environmental Pty Limited. For water quality purposes, water was purged from the bore until constant pH (+/-0.1 pH units) and Electrical Conductivity ($+/-5 \%$) was obtained between samples. Data is displayed in Table 3 and Figures 3 to 6.

Groundwater depth increased at all sampled sites compared to last month, indicating water generally moving away from the surface.
pH at all sites is in the acidic to neutral range. pH levels remained steady across all sampled sites with the exception of CQ10 which showed a decreased in pH . EC levels were generally similar when compared to the results obtained in December 2013.

Table 3: Groundwater Quality Data

Reference	Bore	Type	Depth to water TOC (m) April 06	Depth to water TOC (m) This report	pH This report	Electrical Conductivity ($\mu \mathrm{S} / \mathrm{cm}$) This report
CQ1	Voutos	* Monitor	20.59	Removed		
CQ3	Voutos	* Monitor	10.53	10.58	6.6	219
CQ4	Voutos	* Monitor	8.78	10.84	4.9	132
CQ5	Gazzana	DIP Only	8.69	7.60	4.4	215
CQ6	Gazzana	DIP Only	16.00	NM	NM	NM
CQ7	Gazzana	* Monitor	6.89	6.97	4.7	132
CQ8	Gazzana	* Monitor	11.03	6.58	4.6	179
CQ9	Gazzana	DIP Only	10.10	9.34	4.8	136
CQ10	Voutos	* Monitor	NI	23.59	4.8	229
CQ11S	Gazzana	* Monitor	NI	11.15	4.9	194
CQ11D	Gazzana	* Monitor	NI	12.39	4.8	198
CQ12	Gazzana	* Monitor	NI	5.10	4.6	166
CQ13	Kashouli	* Monitor	NI	14.44	4.6	279
CP3	Gazzana	Domestic	10.40	9.65	4.9	188
CP4	Kashouli	Domestic	13.63	11.50	NM	NM
CP5	Kashouli	Domestic	16.61	9.09	4.7	292
CP6	Kashouli	Domestic	16.27	11.36	4.7	243
CP7	Kashouli	Production	8.56	4.00	5.4	180
CP8	Rozmanec	Domestic	22.17	NR	NR	NR
MW7	Rocla Bore	* Monitor	15.76	16.70	4.9	171
MW8	Rocla Bore	* Monitor	9.82	7.90	5.0	121
MW9	Rocla Bore	* Monitor	22.44	22.45	4.9	115
MW10	Rocla Bore	* Monitor	15.41	NM	NM	NM
MW13	Rocla Bore	DIP Only	NI	NM	NM	NM
MW16	Rocla Bore	DIP Only	NI	NM	NM	NM

Notes:
TOC = Water level measured from top of bore case to water.
NM $=$ Not Monitored - unable to sample water due to access restrictions.
NR = Not Required by resident.

* $=$ Logger Installed.
$\mathrm{NI}=$ These bores were not installed in April 2006 but are now operational. April 2006 was the first set of measurements taken by Carbon Based Environmental Pty
Limited.
Shading is used to indicate the following trends in water depth (compared to the last reading):

	Increase to ground water depth (water moved away from surface)
	Decrease to ground water depth (water moved towards surface)
	Stable water depth (+/-0.01m)

Available groundwater loggers were downloaded and will be forwarded to the Rocla Calga Quarry groundwater consultant.

Figures 3 to 6: Groundwater Depth Charts.

Rocla Calga Groundwaters - Quarry Bores CQ1 to CQ9
Water Depth TOC

Rocla Calga Groundwaters - Quarry Bores CQ10 to CQ13
Water depth TOC

- CQ11s
- CQ11D
- CQ12
- CQ13

Rocla Calga Groundwaters - Quarry Bores CP3 to CP8
Water Depth TOC

Rocla Calga Groundwaters - Quarry Bores MW7 to MW16 Water Depth TOC

2.4 Meteorological Monitoring

The Rocla Calga Quarry weather station data recovery in January 2014 was approximately 100%. The weather station data follows and includes;

- Monthly data numerical summary;
- Weather charts of air temperature, humidity, heat index and wind chill, atmospheric pressure, solar radiation, evapotranspiration, rain, wind speed and data reception; and
- Wind rose (frequency distribution diagram of wind speed and direction).

Monthly weather statistics from the nearby Bureau of Meteorology (BOM) at Peats Ridge station are no longer available. However, the long term rainfall mean is available via a link on the Gosford BOM Daily Weather Observation page.

Data for January 2014 shows that rainfall recorded at the Rocla Calga Quarry was higher than the Gosford BOM and lower than the Peats Ridge long term mean rainfall for January 2014. The rainfall comparison is provided below:

Rocla Calga Quarry	29.6 mm
BOM Peats Ridge*	NA
BOM Gosford*	22.0 mm
BOM Peats Ridge Long term mean for January*	117.0 mm
NA = Not Available	
*Data sourced from Bureau of Meteorology (BOM) website (www.bom.gov.au).	

Results are displayed in the following table and figures.

2.4.1 Monthly Meteorological Data Summary

Summary Jan-14 Rocla - Calga

Date	Min Temp	Av Temp	Max Temp	Min \%RH	Av \%RH	Max \%RH	RAIN mm	ET mm	Min WS	Av WS	Max WS	Min wind chill	Max Heat index	Min Atm P	Av Atm P	Max Atm P	Min Solar Rad	Av Solar Rad	Max Solar Rad	Min Data \%	Avdata \%	Max Data \%
1/01/2014	17.7	22.9	31.8	48	76	95	0.2	4.6	0	1.8	9.4	17.8	34.0	1005.2	1010.9	1015.1	0	240.2	1047	93.6	99.9	100
2/01/2014	20.9	27.0	36.9	23	60	90	0.0	5.1	0	3.2	20.1	21.0	37.1	1000.5	1002.8	1006.5	0	155.1	968	99.7	100.0	100
3/01/2014	18.3	22.9	29.9	50	82	95	1.4	4.0	0	1.4	8	18.3	32.3	995.9	1000.7	1005.9	0	222.4	1165	91.2	99.7	100
4/01/2014	19.4	23.0	28.1	56	77	95	0.0	5.2	0	2.2	8.9	19.5	29.1	995.8	1001.3	1007.7	0	279.1	1035	94.2	99.6	100
5/01/2014	17.0	23.1	30.6	55	78	96	0.0	5.2	0	1.8	9.8	17.0	33.4	1001.4	1005.6	1009.5	0	270.8	1076	99.7	100.0	100
6/01/2014	17.1	23.3	33.9	9	63	95	0.2	7.4	0	2.5	12.5	17.1	31.2	1003.0	1007.4	1014.1	0	348.8	1070	92.4	99.7	100
7/01/2014	15.7	18.3	20.0	68	78	94	2.0	2.1	0	2.4	9.4	15.7	20.1	1013.8	1017.2	1020.6	0	91.8	452	86.5	99.6	100
8/01/2014	14.9	17.6	20.3	66	82	97	1.4	2.1	0	0.9	7.6	14.9	20.6	1018.9	1021.3	1022.8	0	120.1	868	89.8	99.1	100
9/01/2014	15.4	19.2	25.9	49	74	90	0.0	2.6	,	0.8	6.7	15.5	25.7	1020.6	1021.9	1023.4	0	131.2	897	48.2	96.2	100
10/01/2014	16.9	21.7	29.3	49	76	93	0.0	3.7	0	1.2	8.5	16.9	29.9	1017.2	1019.1	1021.2	0	188.1	993	88	99.5	100
11/01/2014	16.8	24.4	34.9	36	70	96	0.0	5.6	0	1.0	7.2	16.8	37.7	1012.0	1015.2	1017.9	0	295.9	1064	85.1	99.5	100
12/01/2014	17.7	23.2	29.6	50	77	95	0.0	5.5	0	1.8	8.9	17.8	30.8	1013.4	1015.8	1019.4	0	298.7	998	84.5	99.7	100
13/01/2014	16.8	21.7	27.8	54	74	93	0.0	5.0	0	1.7	8.5	16.8	28.1	1017.8	1019.3	1020.8	0	270.4	1037	92.7	99.6	100
14/01/2014	15.7	23.2	33.8	40	73	95	0.0	5.7	0	1.7	10.7	15.7	35.9	1017.5	1019.2	1021.3	0	294.4	1027	84.5	99.4	100
15/01/2014	17.3	25.4	35.8	39	70	96	0.0	6.3	0	1.5	11.2	17.3	39.1	1015.1	1017.9	1020.8	0	310.6	1016	84.5	99.4	100
16/01/2014	17.8	24.9	34.8	42	74	96	0.0	6.0	0	1.6	8.9	17.8	38.4	1013.8	1015.9	1017.9	0	313.9	1027	91.5	99.6	100
17/01/2014	17.5	24.1	34.6	39	74	97	0.2	5.7	0	1.8	11.2	17.6	37.3	1011.4	1013.6	1015.8	0	281.5	1021	90.4	99.4	100
18/01/2014	16.2	25.9	38.6	30	67	97	0.2	6.3	0	1.5	8.9	16.2	41.4	1006.0	1009.1	1012.0	0	303.2	1018	97.7	99.9	100
19/01/2014	19.0	22.8	29.1	57	81	93	0.0	4.7	0	2.5	10.7	19.1	31.2	1006.6	1007.7	1008.7	0	241.7	967	93.9	99.9	100
20/01/2014	19.9	22.6	29.1	58	85	96	9.8	2.5	0	1.4	8.9	20.0	30.7	1005.5	1007.3	1009.0	0	131.1	729	58.5	96.1	100
21/01/2014	19.6	20.7	22.7	89	96	98	3.6	1.0	0	1.1	6.3	19.6	24.1	1005.9	1007.9	1010.9	0	67.3	369	51.2	77.4	98.5
22/01/2014	17.9	19.5	20.7	77	91	97	2.2	1.0	0	2.4	9.8	17.9	22.1	1011.0	1016.9	1021.7	0	49.0	272	62.3	86.1	100
23/01/2014	17.7	19.9	22.9	72	87	96	0.8	1.4		1.0	5.8	17.7	23.7	1017.6	1020.0	1022.2	0	81.6	375	62.9	89.6	100
24/01/2014	17.8	22.2	28.6	63	86	98	6.2	2.9	0	1.5	11.2	17.8	30.8	1004.1	1009.9	1017.7	0	167.7	607	56.1	89.2	100
25/01/2014	17.2	19.6	23.2	62	79	96	0.4	3.6	0	2.8	12.1	17.3	23.6	1005.3	1012.4	1020.7	0	184.3	1772	66.1	94.3	100
26/01/2014	14.1	17.7	22.7	56	80	96	1.0	2.3	0	0.6	3.1	14.1	22.5	1020.1	1022.6	1025.1	0	135.5	809	82.2	94.9	100
27/01/2014	12.2	19.9	28.1	48	74	95	0.0	5.0	0	1.7	9.4	12.2	28.4	1020.0	1021.9	1024.5	0	278.8	1149	89.5	97.5	100
28/01/2014	16.6	22.6	29.8	49	70	87	0.0	5.9	0.4	2.7	12.1	16.6	30.9	1014.9	1018.0	1020.8	0	286.8	1010	96.2	99.6	100
29/01/2014	16.3	24.4	36.2	36	68	92	0.0	5.7	0	1.5	7.6	16.3	39.1	1012.1	1014.3	1016.2	0	285.6	1010	74.3	98.7	100
30/01/2014	16.1	22.9	32.1	42	70	96	0.0	5.8	0	1.7	9.8	16.1	33.2	1014.1	1016.1	1018.4	0	290.0	1019	91.8	99.7	100
31/01/2014	15.8	24.5	35.2	31	65	94	0.0	5.7		1.6	7.2	15.9	37.6	1009.4	1011.9	1014.2	0	282.1	1001	97.1	99.9	100
Monthly	12.2	22.3	38.6	9	76	98	29.6	135.5	0	1.7	20.1	12.2	41.4	995.8	1013.6	1025.1	0	222.5	1172	48.2	97.2	100

2.4.2 Monthly Weather Charts

Rocla Calga Quarry - January 2014 Air Temperature

——Max Temp
_- Av Temp
_- Min Temp

Rocla Calga Quarry - January 2014 Humidity

Rocla Calga Quarry - January 2014
Heat Index/Wind Chill

Rocla Calga Quarry - January 2014 Wind Speed

Rocla Calga Quarry - January 2014
Solar Radiation

Rocla Calga Quarry - January 2014
Atmospheric Pressure

Rocla Calga Quarry - January 2014 Rainfall

- ET mm

Rocla Calga Quarry - January 2014
Data Reception

2.4.3 Monthly Windrose Plot

Frequency plot of the average wind speed and average direction over each 15 minute sampling period. Wind is considered to be calm when less than a 15 minute average of $1 \mathrm{~m} / \mathrm{s}$.

00:15, 01 January 2014-23:45, 31 January 2014

The predominant winds were from the ENE, with strongest winds from the WSW. The maximum wind speed was $20.1 \mathrm{~m} / \mathrm{s}$ from the SSW.

Appendix 1

Laboratory Certificates

Environmental

[^1]Environmental 5

Page	$: 2$ of 4
Work Order	$:$ EN1400353
Client	$:$ CARBON BASED ENVIRONMENTAL
Project	$:$ ROCLA CALGA DUSTS

General Comments

 developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.
Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.
Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society LOR = Limit of reporting
${ }^{\wedge}=$ This result is computed from individual analyte detections at or above the level of reporting

- Analysis as per AS3580.10.1-2003. Samples passed through a 1 mm sieve prior to analysis. NATA accreditation does not apply for results reported in g/m².mth as sampling data was provided by the client.

Page
Work Order
Client

Analytical Results

Sub-Matrix: DUST (Matrix: AIR)	Client sampling date / time			$\begin{gathered} C D 1 \\ 03 / 01 / 14-03 / 02 / 14 \end{gathered}$	$\begin{gathered} C D 2 c \\ 03 / 01 / 14-03 / 02 / 14 \end{gathered}$	$\begin{gathered} \text { CD3 } \\ 03 / 01 / 14-03 / 02 / 14 \end{gathered}$	$\begin{gathered} \text { CD4 } \\ 03 / 01 / 14-03 / 02 / 14 \end{gathered}$	$\begin{gathered} \text { CD5 } \\ 03 / 01 / 14-03 / 02 / 14 \end{gathered}$
Compound	CAS Number	LOR	Unit	EN1400353-001	EN1400353-002	EN1400353-003	EN1400353-004	
EA120: Ash Content								
Ash Content	----	0.1	$\mathrm{g} / \mathrm{m}^{2}$.month	0.9	0.3	0.5	0.3	0.1
Ash Content (mg)	---	1	mg	17	5	9	5	2
EA125: Combustible Matter								
Combustible Matter	---	0.1	$\mathrm{g} / \mathrm{m}^{2}$.month	0.7	0.3	0.3	0.4	0.2
Combustible Matter (mg)	---	1	mg	12	6	6	7	4
EA141: Total Insoluble Matter								
Total Insoluble Matter	---	0.1	$\mathrm{g} / \mathrm{m}^{2}$.month	1.6	0.6	0.8	0.7	0.3
Total Insoluble Matter (mg)	---	1	mg	29	11	15	12	6

Analytical Results

Sub-Matrix: DUST (Matrix: AIR)	Client sample ID			$\begin{gathered} \text { CD6 } \\ 03 / 01 / 14-03 / 02 / 14 \end{gathered}$	--	--	---	---
			nt sample ID					
	Client sampling date / time			03-FEB-2014 15:00	--	--	--	--
Compound	CAS Number	LOR	Unit	EN1400353-006	-	-	-	-
EA120: Ash Content								
Ash Content	---	0.1	$\mathrm{g} / \mathrm{m}^{2}$.month	0.3	---	--	--	--
Ash Content (mg)	\cdots	1	mg	5	---	--	--	--
EA125: Combustible Matter								
Combustible Matter	\cdots	0.1	$\mathrm{g} / \mathrm{m}^{2}$.month	0.4	--	---	---	---
Combustible Matter (mg)	---	1	mg	7	--	--	\cdots	--
EA141: Total Insoluble Matter								
Total Insoluble Matter	---	0.1	$\mathrm{g} / \mathrm{m}^{2}$. month	0.7	---	\cdots	--	--
Total Insoluble Matter (mg)	--	1	mg	12	---	--	--	--

Enuironmental

[^2]Environmental 5

Page
Work Order
Client
Project

General Comments

 developed procedures are employed in the absence of documented standards or by client request.
Where moisture determination has been performed, results are reported on a dry weight basis
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.
Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.
Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
$\wedge=$ This result is computed from individual analyte detections at or above the level of reporting

Page
Work Order
Client

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID							
				A	F	---	---	---
	Client sampling date / time			[03-FEB-2014]	[03-FEB-2014]	--	--	--
Compound	CAS Number	LOR	Unit	ES1402052-001	ES1402052-002	-	-	-
EA005: pH								
pH Value	-	0.01	pH Unit	6.57	6.32	---	---	--
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ $25^{\circ} \mathrm{C}$	---	1	$\mu \mathrm{S} / \mathrm{cm}$	86	92	--	--	--
EA015: Total Dissolved Solids								
Total Dissolved Solids @180 ${ }^{\circ} \mathrm{C}$	\cdots	10	mg / L	61	73	\cdots	---	--
EA025: Suspended Solids								
Suspended Solids (SS)	---	5	mg / L	9	<5	--	--	--
EP020: Oil and Grease (08G)								
Oil \& Grease	\cdots	5	mg / L	<5	<5	--	---	--

CARbon Based Environmental Pty Limited

Todays Collection	
Time Start:	9.35
Time Finish:	1.00

Client :
GROUNDWATERS
Project :

Site	DEPTH	Odour	Water Turbidity	Water Colour	1		2		Bottles (Apr/Oct)	Downloaded Logger? (Y/N)
					pH	EC	pH	EC		
CQ1			GST	CLOOBG					$1 \times 250 \mathrm{ml} \mathrm{GP}, 1 \times 1 \mathrm{~L}$ GP, 1RP	Gone
CQ3	10.58	yes	(c) ST	CLOOB G	6.60	225.4us	6.63	218.945	$1 \times 250 \mathrm{ml} \mathrm{GP}, 1 \times 1 \mathrm{LGP}, 1 \mathrm{RP}$	No
CQ4	10.84	\cdots	(C) ${ }^{\text {T }}$	(C)LO O B G	4.88	(32.3us	4.89	$132.4 a)$	$1 \times 250 \mathrm{ml}$ GP, $1 \times 1 \mathrm{~L}$ GP, 1RP	/ES
CQ5	7.60	N	(C) $\mathrm{S}^{\text {T }}$	CLO O B G	4.88	253.45	4.39	214.9	$1 \times 250 \mathrm{ml}$ GP, 1× 1L GP, 1RP	
CQ6			CST	CLOOBG		23.5			1×250mाGP, $1 \times 1 \mathrm{LGP}, 1 \mathrm{RP}$	No Access
CQ7	6.97	N	©S T	0 CO O B G	4.69	$131-2+45$	$4 \cdot 69$	131.745	$1 \times 250 \mathrm{ml} \mathrm{GP} ,\mathrm{1} \mathrm{\times 1L} \mathrm{GP}, \mathrm{1RP}$	No
CQ8	6.58	N	©S T	CLOOB G	4.65	178.10	4.62	178.7us	$1 \times 250 \mathrm{ml}$ GP, 1× 1 L GP, 1RP	No
CQ9	9.34	\cdots	C(S)T	(C) 00 BG	4.76	133.7 s	4.76	135.7 us	$1 \times 250 \mathrm{ml} \mathrm{GP}, 1 \times 1 \mathrm{LGP}, 1 \mathrm{RP}$	No
CQ10	23.59	N	(c) ${ }^{\text {c T }}$	(CD)OB G	4.66	230.5 sm	4.75	229.05	$1 \times 250 \mathrm{ml} \mathrm{GP}, 1 \times 1 \mathrm{LGP}, 1 \mathrm{RP}$	N
CQ11S	11.15	N	C) T	¢ LOOB G	4.89	192-7us	4.91	193 -8us	$1 \times 250 \mathrm{ml}$ GP, $1 \times 1 \mathrm{LGP}, 1 \mathrm{RP}$	yes
CQ11D	12-39	N	(c) ${ }^{T}$	(C)LO O B G	4.76	195.6 w	4.76	198.3uv	$1 \times 250 \mathrm{ml}$ GP, $1 \times 1 \mathrm{~L}$ GP, 1RP	No
CQ12	8.10	\cdots	CS T	ClOOB G	4.62	165.1 m	4.62	165,9us	$1 \times 250 \mathrm{ml}$ GP, 1x 1L GP, 1RP	YES
CQ13	14.44	N	(c) ST	C)LO O B G	4.59	277.Sus	4.58	278.6 us	$1 \times 250 \mathrm{ml} \mathrm{GP}, 1 \times 1 \mathrm{LGP}, 1 \mathrm{RP}$	YES
CP3	9.65	N	(6) 5	ClOOBG	4.93	187.6 us	4.93	188.1 as	$1 \times 250 \mathrm{ml}$ GP, $1 \times 1 \mathrm{~L}$ GP, 1RP	
CP4	16.50		CST	CLOOBG				18.814	$1 \times 250 \mathrm{mr} \mathrm{GP}, 1 \times 1 \mathrm{LGP}, 1 \mathrm{RP}$	
CP5	9.09	ν	c) S T	(C)LO O B G	463	28450	4.67	292.45	$1 \times 250 \mathrm{ml}$ GP, 1× 1L GP, 1RP	
CP6	$1(.36$	\cdots	CST	CLOOBG	4.75	238.5 n	4.68	$2(3640)$	$1 \times 250 \mathrm{ml} \mathrm{GP}, 1 \times 1 \mathrm{~L} \mathrm{GP}, \mathrm{1RP}$	
CP7	4.00	\checkmark	(b)T	CLOO B G	5.21	18.0 .645	8.38	(79.5u)	$1 \times 250 \mathrm{ml} \mathrm{GP}, 1 \times 1 \mathrm{LGP}, 1 \mathrm{RP}$	
CP8			CST	CLOOB G					$1 \times 250 \mathrm{ml} \mathrm{GP}, 1 \times 1 \mathrm{LGP}, 1 \mathrm{RP}$	Only required Apr/Oct
MW7	16.70	N	(C) $\mathrm{S}^{\text {T }}$	(C) LOO B G	4.94	167.74	4.91	171.45	$1 \times 250 \mathrm{ml}$ GP, 1× 1L GP, 1RP	Y/ES
MW8	7.90	N	QS T	(0)LO O B	4.97	122.305	4.95	120.545	$1 \times 250 \mathrm{ml}$ GP, 1× 1L GP, 1RP	yes
MW9	22.45	NO	C) ST	(C)LOOBG	4.96	$113 \cdot 2 a s$	4.90	115.145	$1 \times 250 \mathrm{ml}$ GP, 1× 1L GP, 1RP	(tisis)
MW10			GST	GLOOBG					$1 \times 250 \mathrm{ml}$ GP, $1 \times 1 \mathrm{LGP}$, 1RP	No Access
MW13			CST	CLOOBG					1×250mTGP, 1 \times IL GP, TRP	
MW16			CST	CLOOBG					1×250mIGP, 1 1 12-6P,1RP	

Turbidity: $\mathrm{C}=$ Clear, $\mathrm{S}=$ Slight, $\mathrm{T}=$ Turbid (CIRCLE)
Colour: $\mathrm{C}=$ Clear, $\mathrm{LO}=$ Light Orange, $\mathrm{O}=$ Orange, $\mathrm{B}=\mathrm{Brown}, \mathrm{G}=\mathrm{Green}$ (CIRCLE)
pH/EC meter \#: 6
Signed: ${ }^{\text {Pl< }} \quad$ PH: 3.98
Sampled by: Leesa \& Hami sh

Time Start:	$9 \cdot 35$
Time Finish:	$9 \cdot 35$

Client :
Rocla Calga
SURFACE WATERS
Project :

Site	Flow Rate	Odour	Sampling Time	Bottles	$\begin{gathered} \text { Water } \\ \text { Turbidity } \end{gathered}$	Water Colour	Comments
Cabbage Tree Creek	DRy			1×260m+GP, 4x-1t-6P, + \times PO	GST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOBG	
					CST	CLOOB G	

Turbidity: C=Clear, $\mathrm{S}=$ Slight, $\mathrm{T}=$ Turbid (CIRCLE)
Signed: 2 C

Colour: C=Clear, LO=Light Orange, O=Orange, B=Brown, G=Green (CIRCLE)
Sampled by: Leera + Hamish

[^0]: *Data sourced from Bureau of Meteorology (BOM) website (www.bom.gov.au). No data was available from the BOM Peats Ridge station for December 2013
 Note: Differences in the daily rainfall readings between BOM and the Rocla station may occur due to BOM stations reporting rainfall at 9 am and the Rocla station recording rainfall at midnight.

[^1]: Addross 5/585 Maitland Road Mayfield West NSW Australia 2304 PHONE $\mathbf{+ 6 1 2 4 0 1 4 2 5 0 0 \text { Facsimile }}+61249680349$

[^2]: Address $277-289$ Woodpark Road Smilhfeld NSW Australia 2164 PHONE $+61-2-87848555$ Facsimile $+61-2-87848500$

