

Carbon Based Environmental Pty Limited ABN 74 102 920 285

Rocla Quarry Products Calga Quarry

Environmental Monitoring

Dust Deposition Gauges, Surface and Ground Waters and Meteorological Station

August 2015

Colin Davies BSc MEIA CENVP

Environmental Scientist Date: 19 October 2015

© Carbon Based Environmental Pty Limited 2014. This document was prepared solely for the original recipient and no third party must rely on or use any information without the consent of Carbon Based Environmental Pty Limited. Carbon Based Environmental Pty Limited and the author accept no responsibility to any third party who uses or relies upon the information contained in this report.

Executive Summary

Carbon Based Environmental is contracted by Rocla Quarry Products to conduct environmental monitoring at the Calga Sand Quarry.

The monitoring includes;

- Dust Deposition Gauges;
- Surface Waters:
- · Groundwaters; and
- Meteorological Station.

This report was prepared by Carbon Based Environmental and includes the following;

- Dust Deposition results for August 2015;
- Surface Water quality results for August 2015; and
- Meteorological report for August 2015.

The August 2015 dust deposition results for insoluble solids were generally low and free of major contamination. All sites, on a rolling annual average basis, are currently below the Air Quality Management Plan exceedance level of $3.7g/m^2$.month. Results were found to be representative of dust levels as determined by the Australian Standard.

Surface water samples were collected on 2 September 2015 at sites A, D and F. Site B was dry and Site C was inaccessible and was unable to be sampled this month. The samples were collected and analysed for a monthly sampling event. Results show pH within the slightly acidic range, low Electrical Conductivity, low Total Dissolved Solids and low Total Suspended Solids. Oil and Grease was not detected at any site in August 2015.

Bi-monthly groundwaters were sampled on 3 August 2015 and are next scheduled for September 2015.

Data for August 2015 shows that rainfall recorded at the Rocla Calga Quarry was higher than the Gosford BOM and lower than the Peats Ridge long term, mean rainfall for August 2015. The rainfall comparison is provided below:

Rocla Calga Quarry

BOM Peats Ridge*

BOM Gosford*

BOM Peats Ridge Long term mean for August*

34.2 mm

NA

28.0 mm

74.0mm

Note: Differences in the daily rainfall readings between BOM and the Rocla station may occur due to BOM stations reporting rainfall at 9am and the Rocla station recording rainfall at midnight.

^{*}Data sourced from Bureau of Meteorology (BOM) website (www.bom.gov.au). No data was available from the BOM Peats Ridge station for August 2015

Sampling Program

Rocla Calga Quarry conducts environmental monitoring in accordance to Development Consent, OEH (EPA) licence and Environmental Management Plans. Carbon Based Environmental are contracted to undertake dust deposition gauge, surface and groundwater and meteorological monitoring for the project. Carbon Based Environmental commenced monitoring from the April 2006 monitoring period.

Dust deposition gauges are operated to the Australian Standard $\underline{AS3580.10.1}$ "Methods for Sampling and Analysis of Ambient Air Method 10.1 Determination of Particulates—Deposited Matter—Gravimetric Method". Sampling is undertaken every 30 +/- 2 days and each gauge is analysed for insoluble solids and ash residue. The results are reported as g/m^2 .month.

Surface waters are sampled in accordance with Australian Standards <u>AS5667.1</u> "Guidance on the Design of Sample Programs, Sampling Techniques and the Preservation and Handling of Samples", <u>AS5667.6</u> "Water Quality Sampling—Guidance on sampling of rivers and streams" and <u>AS5667.4</u> "Water Quality Sampling—Guidance on sampling from lakes, natural and man-made". Surface water monitoring sites include local streams and dams. Basic analysis including pH, Electrical Conductivity, Total Suspended Solids, Total Dissolved Solids and Total Oil and Grease is conducted monthly at Sites A and F (dams) and when Sites B, C and D are flowing. Additional samples are collected when daily rainfall exceeds 50mm.

Groundwaters are sampled in accordance with Australian Standards <u>AS5667.1</u> "Guidance on the Design of Sample Programs, Sampling Techniques and the Preservation and Handling of Samples" and <u>AS5667.11</u> "Water Quality Sampling—Guidance on sampling of ground waters". Groundwater monitoring sites are sampled bi-monthly for depth and water quality. Groundwater monitoring loggers continuously record water levels in a selection of bores.

Meteorological monitoring is conducted at the quarry and displayed on the site computer with a real time display. Wind parameters are measured according to Australian Standard <u>AS 2923</u> "Ambient Air— Guide for Measurement of Horizontal Wind for Air Quality Applications".

The weather stations have the following sensor configuration; Air temperature

- Humidity
- Rainfall
- Atmospheric pressure
- Evaporation
- Solar radiation
- Wind speed
- Wind direction

Carbon Based Environmental continued to operate the monitoring equipment and utilise site collections at their existing locations.

The locations of monitoring points are provided in Figure 1.

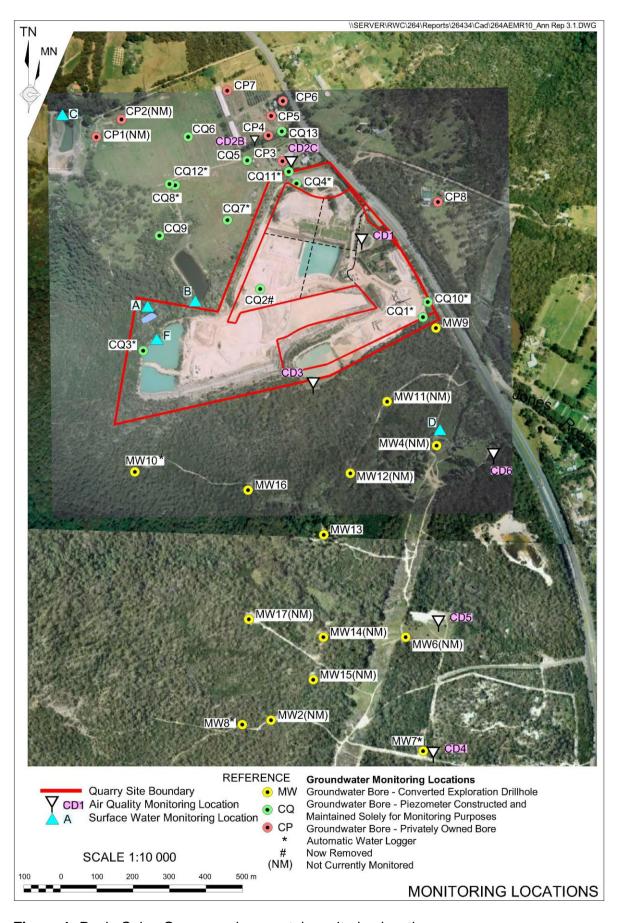


Figure 1: Rocla Calga Quarry environmental monitoring locations

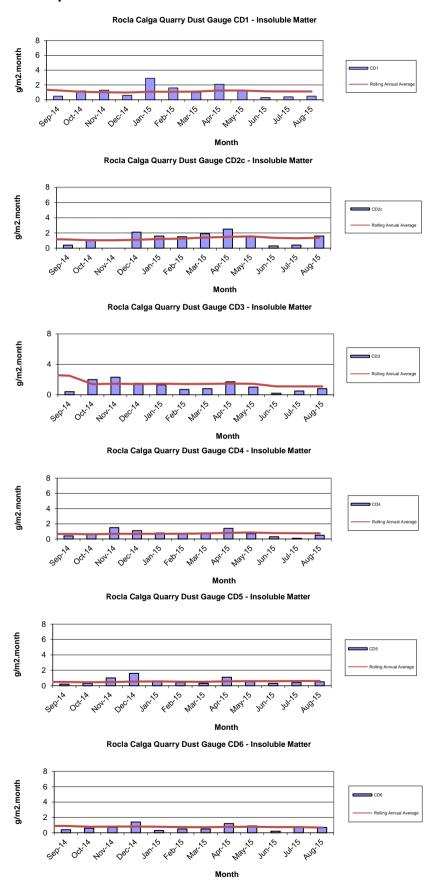
2.0 Monthly Results

2.1 Dust Deposition Gauges

Table 1 displays the results for August 2015 and the project 12 month rolling average. Results are in g/m².month.

Table 1: Dust Deposition results: 3 August 2015 – 2 September 2015 (30 days)

Site	Monthly Insoluble Solids g/m².month	Monthly Ash Residue g/m².month	Monthly Combustible Matter g/m ² .month	Monthly Ash Residue/ Insoluble Solids %	Rolling Annual Average Insoluble Solids g/m².month
CD1	0.5	0.3	0.2	60	1.1
CD2c	1.6	1.1	0.5	69	1.4
CD3	0.8	0.5	0.3	63	1.1
CD4	0.5	0.2	0.3	40	0.8
CD5	0.5	0.2	0.3	40	0.6
CD6	0.7	0.2	0.5	29	0.7


Insoluble Solids marked with an * indicate an excessively contaminated gauge. Contamination can include bird droppings, vegetation (such as plant matter, algae, pollen and seeds) and insects. Results in bold indicate insoluble solids levels above 3.7 g/m².month; the Development Consent's annual average amenity criteria at residential locations. The current rolling annual average is calculated from September 2014 to August 2015.

NA= Not Available.

CD1 was installed on the 1 May 2006. CD2a was discontinued at the start of August 2006 due to quarry operations "mining out" the site of the gauge. The replacement gauge, Site CD2b, was located in a position adjacent to the boundary between B. Kashouli and F. & J. Gazzana in conformance with the Air Quality Management Plan. CD4 was installed on 3 October 2006, to gauge air quality impacts to the south of the site operations, as were CD5 and CD6 which were installed on the 14 December 2006. CD2b was discontinued at the end of January 2010 due to contamination of the gauge by non-quarry related vehicle movements on a track adjacent to the gauge. The replacement gauge, CD2c, was located on a rehabilitated section of land between the extraction area and adjacent resident.

Dust deposition charts for all dust gauge sites appear in **Figure 2** below. The laboratory analysis is provided in **Appendix 1.**

Figure 2: Dust Deposition Charts

2.2 Surface Water Monitoring

Monthly surface water monitoring was conducted on the 2 September 2015 and results are listed in **Table 2**. The laboratory analysis sheets are provided in **Appendix 1**.

Table 2: Monthly surface water monitoring – August grab sample results

Site	Observed Flow Rate	Water Colour	Turbidity	рН	EC (μS/cm)	TDS (mg/L)	TSS (mg/L)	Oil and Grease (mg/L)					
Α	Still	Clear	Clear	5.49	60	28	<5	<5					
В		No Flow											
С		No Access											
D	Still	Clear	Clear	5.27	109	56	5	<5					
F	Still	Clear	Clear	5.49	70	42	<5	<5					

Samples were collected at sites A, D and F. Site B was dry and Site C was inaccessible and was unable to be sampled this month. The samples were collected and analysed for a monthly sampling event. Results show pH within the slightly acidic range, low Electrical Conductivity, low Total Dissolved Solids and low Total Suspended Solids. Oil and Grease was not detected at any site in August 2015.

2.2.1 Non-Routine Surface Water Sampling

No non routine sampling was undertaken during August 2015.

2.3 Groundwater Monitoring

Bi-monthly groundwater monitoring is next scheduled for September 2015.

2.4 Meteorological Monitoring

The Rocla Calga Quarry weather station data recovery in August 2015 was approximately 100%.

The weather station data follows and includes:

- Monthly data numerical summary;
- Weather charts of air temperature, humidity, heat index and wind chill, atmospheric pressure, solar radiation, evapotranspiration, rain, wind speed and data reception; and
- Wind rose (frequency distribution diagram of wind speed and direction).

Monthly weather statistics from the nearby Bureau of Meteorology (BOM) at Peats Ridge station are no longer available. However, the long term rainfall mean is available via a link on the Gosford BOM Daily Weather Observation page.

Data for August 2015 shows that rainfall recorded at the Rocla Calga Quarry was higher than the Gosford BOM and lower than the Peats Ridge long term, mean rainfall for August 2015.

The rainfall comparison is provided below:

Rocla Calga Quarry

BOM Peats Ridge*

NA

BOM Gosford*

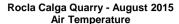
BOM Peats Ridge Long term mean for August*

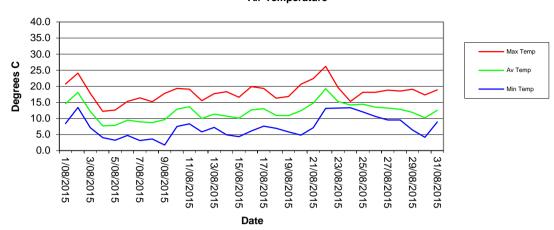
34.2 mm

NA

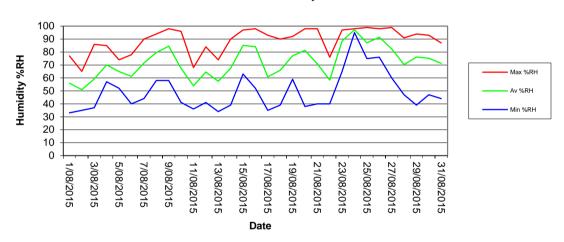
28.0 mm

74.0 mm

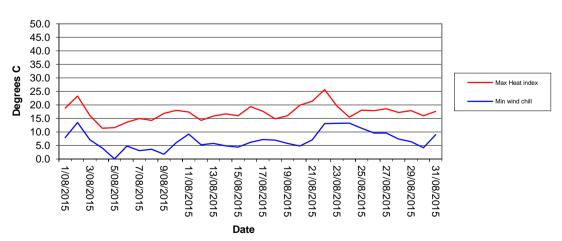

NA = Not Available

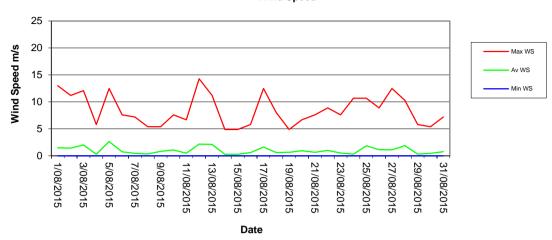

^{*}Data sourced from Bureau of Meteorology (BOM) website (www.bom.gov.au).

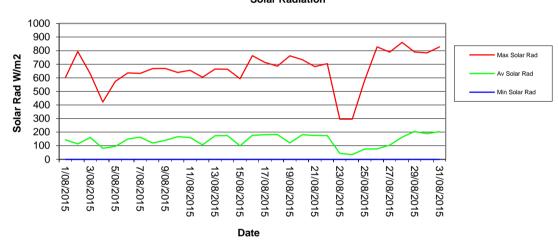
2.4.1 Monthly Meteorological Data Summary

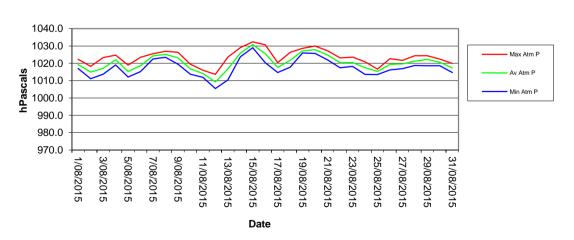

Date	Min Temp	Av Temp	Max Temp	Min %RH	Av %RH	Max %RH	RAIN mm	ET mm	Min WS	AvWS	Max WS	Min wind chill	Max Heat index	Min Atm P	Av Atm P	Max Atm P	Min Solar Rad	Av Solar Rad	Max Solar Rad	Min Data %	Av data %	Max Data %
1/08/2015	8.4	14.6	20.7	33	56	77	0.0	3.2	0.0	1.5	13	7.9	18.8	1017.0	1019.3	1022.3	0	143.1	602	91.2	97.3	98
2/08/2015	13.4	18.1	24.1	35.0	51.0	65.0	0.0	3.1	0.0	1.4	11.2	13.5	23.3	1011.1	1014.9	1018.2	0.0	112.8	794.0	85.1	97.8	98.0
3/08/2015	7.1	12.1	17.8	37.0	59.3	86.0	0.0	3.4	0.0	2.0	12.1	7.1	16.1	1013.7	1017.0	1023.3	0.0	160.2	629.0	74.6	96.9	99.7
4/08/2015	4.0	7.7	12.2	57.0	70.1	85.0	0.0	1.4	0.0	0.3	5.8	4.1	11.4	1019.0	1022.1	1024.7	0.0	81.5	422.0	90.9	96.8	98.0
5/08/2015	3.2	7.8	12.6	52.0	64.9	74.0	0.0	2.2	0.0	2.7	12.5	0.1	11.6	1012.1	1015.3	1018.9	0.0	94.9	574.0	87.1	96.7	98.0
6/08/2015	4.7	9.5	15.3	40.0	61.2	78.0	0.0	2.5	0.0	0.8	7.6	4.8	13.6	1015.2	1018.6	1023.5	0.0	149.4	636.0	77.5	96.4	98.0
7/08/2015	3.1	8.9	16.4	44.0	71.5	90.0	0.0	2.4	0.0	0.5	7.2	3.1	15.0	1022.5	1024.2	1025.5	0.0	162.7	633.0	86.0	95.6	98.0
8/08/2015	3.6	8.7	15.2	58.0	79.6	94.0	0.0	1.6	0.0	0.4	5.4	3.6	14.3	1023.5	1025.1	1026.9	0.0	119.6	668.0	87.7	96.4	98.0
9/08/2015	1.7	9.6	17.8	58.0	84.5	98.0	0.0	1.9	0.0	0.8	5.4	1.8	16.9	1019.5	1023.1	1026.3	0.0	139.5	669.0	90.9	95.8	98.0
10/08/2015	7.5	12.9	19.3	41.0	67.3	96.0	0.3	2.8	0.0	1.1	7.6	6.1	18.0	1013.7	1016.8	1019.5	0.0	166.6	639.0	59.1	93.8	98.0
11/08/2015	8.3	13.6	19.1	36.0	53.9	68.0	0.0	2.9	0.0	0.5	6.7	9.2	17.4	1011.9	1014.1	1016.0	0.0	161.1	655.0	80.7	95.4	98.0
12/08/2015	5.8	10.0	15.5	41.0	64.6	84.0	0.0	2.4	0.0	2.2	14.3	5.3	14.3	1005.4	1009.3	1013.6	0.0	106.5	604.0	86.8	96.5	98.0
13/08/2015	7.2	11.3	17.7	34.0	57.4	74.0	0.0	3.5	0.0	2.1	11.2	5.8	15.9	1010.4	1016.7	1023.6	0.0	172.9	664.0	83.9	96.2	98.0
14/08/2015	4.9	10.7	18.3	39.0	67.4	90.0	0.0	2.6	0.0	0.3	4.9	4.9	16.7	1023.7	1025.9	1029.1	0.0	174.1	663.0	64.6	94.8	98.0
15/08/2015	4.3	10.1	16.6	63.0	85.1	97.0	0.0	1.3	0.0	0.3	4.9	4.4	16.0	1029.0	1030.8	1032.4	0.0	99.1	593.0	88.3	96.7	98.0
16/08/2015	6.1	12.6	19.9	52.0	84.2	98.0	0.0	2.5	0.0	0.6	5.8	6.2	19.4	1020.4	1025.5	1030.7	0.0	176.5	763.0	90.4	97.2	98.0
17/08/2015	7.6	13.0	19.3	35.0	60.8	93.0	0.0	3.4	0.0	1.6	12.5	7.2	17.7	1014.7	1017.6	1020.4	0.0	181.3	713.0	70.8	94.3	98.0
18/08/2015	6.9	10.9	16.3	39.0	65.9	90.0	0.0	2.8	0.0	0.6	8.0	7.0	14.9	1017.8	1021.8	1026.3	0.0	182.0	686.0	87.1	96.2	98.0
19/08/2015	5.8	10.8	16.8	59.0	77.1	92.0	0.0	1.9	0.0	0.7	4.9	5.8	16.0	1026.0	1027.2	1028.6	0.0	121.3	762.0	56.1	93.8	98.0
20/08/2015	4.8	12.4	20.6	38.0	81.3	98.0	0.0	2.7	0.0	1.0	6.7	4.8	19.9	1025.7	1027.8	1030.0	0.0	180.5	734.0	45.0	91.2	98.0
21/08/2015	7.1	14.7	22.4	40.0	70.9	98.0	0.3	2.9	0.0	0.7	7.6	7.1	21.4	1022.0	1024.8	1027.2	0.0	175.2	683.0	82.5	95.8	98.0
22/08/2015	13.1	19.2	26.2	40.0	58.4	76.0	0.0	3.6	0.0	1.0	8.9	13.1	25.7	1017.4	1020.3	1023.1	0.0	174.1	704.0	93.9	97.6	98.0
23/08/2015	13.2	15.2	19.6	65.0	88.6	97.0	15.0	0.9	0.0	0.5	7.6	13.2	19.6	1018.2	1020.4	1023.6	0.0	43.2	296.0	96.8	97.8	98.0
24/08/2015	13.3	14.2	15.3	95.0	97.2	98.0	13.7	0.5	0.0	0.3	10.7	13.3	15.5	1013.6	1017.5	1020.9	0.0	34.6	296.0	86.5	96.8	98.0
25/08/2015	12.0	14.4	18.1	75.0	87.1	99.0	3.5	1.3	0.0	1.9	10.7	11.4	18.1	1013.5	1015.3	1016.6	0.0	75.0	580.0	38.9	92.1	98.0
26/08/2015	10.6	13.5	18.1	76.0	91.4	98.0	1.3	1.2	0.0	1.2	8.9	9.6	17.9	1016.2	1019.4	1022.7	0.0	76.3	828.0	77.2	94.5	98.0
27/08/2015	9.5	13.2	18.8	60.0	82.5	99.0	0.3	1.9	0.0	1.1	12.5	9.6	18.6	1016.9	1019.6	1021.7	0.0	103.3	789.0	83.3	95.2	98.0
28/08/2015	9.5	12.8	18.5	47.0	70.3	91.0	0.0	2.9	0.0	1.9	10.3	7.4	17.2	1018.8	1021.2	1024.4	0.0	162.4	861.0	90.4	96.7	98.0
29/08/2015	6.4	11.8	19.1	39.0	76.1	94.0	0.0	2.9	0.0	0.3	5.8	6.4	17.9	1018.6	1022.2	1024.4	0.0	205.1	790.0	91.2	97.4	98.0
30/08/2015	4.1	10.2	17.3	47.0	75.2	93.0	0.0	2.6	0.0	0.5	5.4	4.2	16.0	1018.6	1020.6	1022.4	0.0	189.3	783.0	95.9	97.6	98.0
31/08/2015	8.9	12.6	18.9	44.0	71.3	87.0	0.0	3.1	0.0	0.8	7.2	9.0	17.6	1014.7	1017.3	1019.9	0.0	203.8	828.0	83.6	96.0	98.0
Monthly	1.7	12.2	26.2	33	72	99	34.2	73.6	0	1.0	14.3	0.1	25.7	1005.4	1020.4	1032.4	0	139.6	861	38.9	95.9	99.7

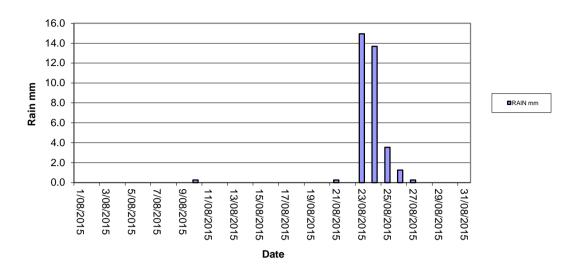
2.4.2 Monthly Weather Charts

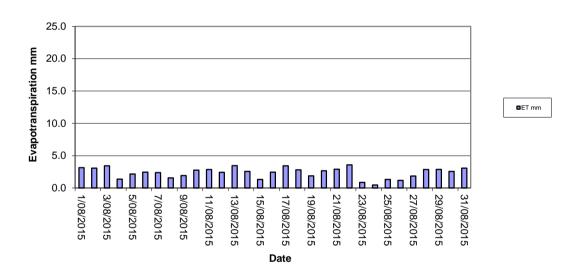


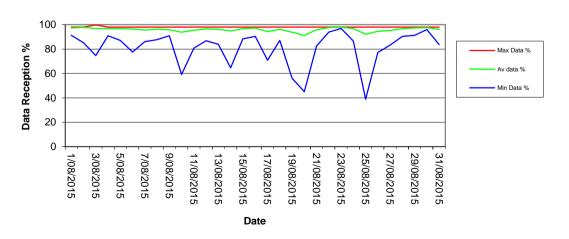

Rocla Calga Quarry - August 2015 Humidity


Rocla Calga Quarry - August 2015 Heat Index/Wind Chill

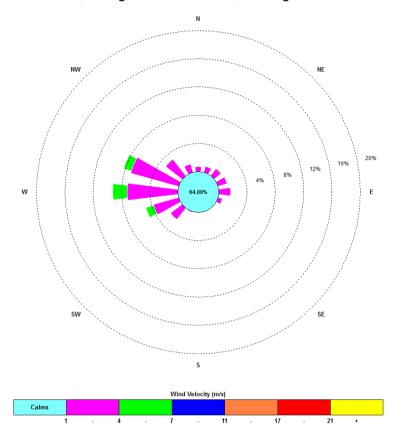

Rocla Calga Quarry - August 2015 Wind Speed


Rocla Calga Quarry - August 2015 Solar Radiation


Rocla Calga Quarry - August 2015 Atmospheric Pressure


Rocla Calga Quarry - August 2015 Rainfall

Rocla Calga Quarry - August 2015 Evapotranspiration



Rocla Calga Quarry - August 2015 Data Reception

2.4.3 Monthly Windrose Plot

Frequency plot of the average wind speed and average direction over each 15 minute sampling period. Wind is considered to be calm when less than a 15 minute average of 1m/s.

00:15, 1 August 2015 - 23:45, 31 August 2015

The predominant winds were from the W, with most frequent, strongest winds from the WNW/WSW. The maximum wind speed was 14.3 m/s from the WSW.

Appendix 1

Laboratory Certificates

CERTIFICATE OF ANALYSIS

Page

Laboratory

Contact

Address

E-mail

Telephone

Facsimile

QC Level

Issue Date

Date Samples Received

No. of samples received

No. of samples analysed

Date Analysis Commenced

EN1512885 Work Order

CARBON BASED ENVIRONMENTAL Client

MR COLIN DAVIES (cbased) Contact Address

47 BOOMERANG ST

CESSNOCK NSW. AUSTRALIA 2325

cbased@bigpond.com E-mail

+61 49904443 Telephone Facsimile +61 02 49904442

Rocla Calga Dusts Project

Order number

C-O-C number

Sampler

Site

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

Quote number

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

1 of 4

Peter Keyte

+61 2 4014 2500

+61 2 4967 7382

02-Sep-2015 13:45

08-Sep-2015 13:45

03-Sep-2015

6

6

Environmental Division Newcastle

peter.keyte@alsglobal.com

5/585 Maitland Road Mayfield West NSW Australia 2304

NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Position Signatories

Laboratory Coordinator (2IC) Dianne Blane

Accreditation Category Newcastle - Inorganics

2 of 4

Work Order

EN1512885

Client

CARBON BASED ENVIRONMENTAL

Project Rocla Calga Dusts

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key:

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Analysis as per AS3580.10.1-2003. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in g/m².mth as sampling data was provided by the client.

Work Order

3 of 4 EN1512885

Client

CARBON BASED ENVIRONMENTAL

Project

Rocla Calga Dusts

Analytical Results

Analytical Results								CDE
ub-Matrix: DEPOSITIONAL DUST Matrix: AIR)		Cli	ient sample ID	CD1 03/08/15 - 02/09/15	CD2c 03/08/15 - 02/09/15	CD3 03/08/15 - 02/09/15	CD4 03/08/15 - 02/09/15	CD5 03/08/15 - 02/09/15
	Cli	ent sampl	ling date / time	[02-Sep-2015] EN1512885-001 Result	[02-Sep-2015] EN1512885-002 Result	[02-Sep-2015]	[02-Sep-2015]	[02-Sep-2015]
	CAS Number	LOR	Unit			EN1512885-003	EN1512885-004 Result	EN1512885-005
Compound	CAS Number					Result		Result
EA120: Ash Content						0.5	0.2	0.2
Ash Content		0.1	g/m².month	0.3	1.1	0.5	0.2	2
Ash Content (mg)		1	mg	5	20	8	3	3
EA125: Combustible Matter							0.3	0.3
Combustible Matter		0.1	g/m².month	0.2	0.5	0.3	0.3	
Combustible Matter (mg)		1	mg	4	8	6	5	3
EA141: Total Insoluble Matter						0.8	0.5	0.5
Total Insoluble Matter		0.1	g/m².month	0.5	1.6			9
Total Insoluble Matter (mg)		1	mg	9	28	14	8	-

4 of 4 EN1512885 Work Order

Client

CARBON BASED ENVIRONMENTAL

Project

Rocla Calga Dusts

Analytical Results

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)		Cli	ent sample ID	CD6 03/08/15 - 02/09/15				
	Cli	ent sampl	ing date / time	[02-Sep-2015]				
Compound	CAS Number	LOR	Unit	EN1512885-006				
Compound				Result	Result	Result	Result	Result
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.2				
Ash Content (mg)		1	mg	4				
EA125: Combustible Matter						,		
Combustible Matter	-	0.1	g/m².month	0.5				
Combustible Matter (mg)		1	mg	8				
EA141: Total Insoluble Matter							The same district of the same	
Total Insoluble Matter		0.1	g/m².month	0.7				
Total Insoluble Matter (mg)		1	mg	12				

CERTIFICATE OF ANALYSIS

Work Order

Client

Contact

: ES1529985

CARBON BASED ENVIRONMENTAL

Address 47 BOOMERANG ST

CESSNOCK NSW, AUSTRALIA 2325

MR COLIN DAVIES (cbased)

E-mail cbased@bigpond.com

+61 49904443 Telephone

+61 02 49904442 Facsimile

ROCLA QUARRY Project

Order number

C-O-C number Sampler

Site

Quote number

Page

1 of 2

Laboratory Contact

Environmental Division Sydney

Address

277-289 Woodpark Road Smithfield NSW Australia 2164

E-mail

Telephone

+61-2-8784 8500 Facsimile NEPM 2013 Schedule B(3) and ALS QCS3 requirement

QC Level Date Samples Received

02-Sep-2015 13:45

Date Analysis Commenced

02-Sep-2015

+61-2-8784 8555

Issue Date

09-Sep-2015 13:34

No. of samples received

3 No. of samples analysed 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Position

Accreditation Category

Ankit Joshi

Barbara Coupland

Inorganic Chemist Quality Officer

Sydney Inorganics Newcastle - Inorganics

2 of 2

Work Order

ES1529985

Client

CARBON BASED ENVIRONMENTAL

Project ROCLA QUARRY

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key:

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	Α	D	F		
	Cli	ent sampli	ng date / time	[02-Sep-2015]	[02-Sep-2015]	[02-Sep-2015]		
Compound	CAS Number	LOR	Unit	ES1529985-001	ES1529985-002	ES1529985-003		
	Res		Result	Result	Result	Result	Result	
EA005: pH								
pH Value		0.01	pH Unit	5.49	5.27	5.49		
EA010P: Conductivity by PC Titrator			3.3974					
Electrical Conductivity @ 25°C		1	μS/cm	60	109	70		
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		10	mg/L	28				
Total Dissolved Solids @180°C		10	mg/L		56	42		
EA025: Suspended Solids								
Suspended Solids (SS)		5	mg/L	<5	5	<5		
EP020: Oil and Grease (O&G)								
Oil & Grease		5	mg/L	<5	<5	<5		

